First I trained a dssd-resnet50 object detection model on nvcr.io/nvidia/tlt-streamanalytics:v3.0-dp-py3
and then I used tao-converter to generate the engine file, but when I used deepstream-app to run When this file is used, deepstream-app reports an error
NvMMLiteOpen : Block : BlockType = 4
===== NVMEDIA: NVENC =====
NvMMLiteBlockCreate : Block : BlockType = 4 **PERF: FPS 0 (Avg) FPS 1 (Avg) **PERF: 0.00 (0.00) 0.00 (0.00) **PERF: 0.00 (0.00) 0.00 (0.00) **PERF: 0.00 (0.00) 0.00 (0.00) **PERF: 0.00 (0.00) 0.00 (0.00) **PERF: 0.00 (0.00) 0.00 (0.00)
**PERF: 0.00 (0.00) 0.00 (0.00)
**PERF: 0.00 (0.00) 0.00 (0.00)
0:00:40.034610171 29666 0x16c92a0 ERROR nvinfer gstnvinfer.cpp:640:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]:
Error in NvDsInferContextImpl::parseBoundingBox() <nvdsinfer_context_impl_output_parsing.cpp:59> [UID = 1]: Could not find output coverage layer for parsing objects
0:00:40.034675482 29666 0x16c92a0 ERROR nvinfer gstnvinfer.cpp:640:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]:
Error in NvDsInferContextImpl::fillDetectionOutput() <nvdsinfer_context_impl_output_parsing.cpp:735> [UID = 1]: Failed to parse bboxes