您好,我已经通过 SdkManager 安装了 Cuda12.2,并且勾选了 OpenCV Runtime 4.8,在使用Python情况下,如何直接使用cuda版OpenCV,执行 cv2.cuda.getCudaEnabledDeviceCount() 后,返回:0。
Hi,
The OpenCV from JetPack doesn’t build with CUDA support.
Please build it from the source.
Below is an auto-build script for your reference:
Thanks.
感谢您的指导,但是运行脚本直接提示:./install_opencv4.6.0_Jetson.sh: 17: Syntax error: Bad for loop variable
看错误的代码行为:
set -e
for (( ; ; ))
do
echo “Do you want to remove the default OpenCV (yes/no)?”
read rm_old
其中 for (( ; ; )) 出错了,如何修复?
Hi,
Here is the script for JetPack 6.0.
install_opencv4.9.0_Jetson.sh (2.7 KB)
$ ./install_opencv4.9.0_Jetson.sh
...
-- General configuration for OpenCV 4.9.0 =====================================
...
-- NVIDIA CUDA: YES (ver 12.2, CUFFT CUBLAS)
-- NVIDIA GPU arch: 87
-- NVIDIA PTX archs:
--
-- cuDNN: YES (ver 8.9.4)
...
** Install opencv 4.9.0 successfully
** Bye :)
Test:
$ python3
Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import cv2
>>> cv2.__version__
'4.9.0'
>>> print(cv2.cuda.printCudaDeviceInfo(0))
*** CUDA Device Query (Runtime API) version (CUDART static linking) ***
Device count: 1
Device 0: "Orin"
CUDA Driver Version / Runtime Version 12.20 / 12.20
CUDA Capability Major/Minor version number: 8.7
Total amount of global memory: 62841 MBytes (65893920768 bytes)
GPU Clock Speed: 1.30 GHz
Max Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072,65536), 3D=(16384,16384,16384)
Max Layered Texture Size (dim) x layers 1D=(32768) x 2048, 2D=(32768,32768) x 2048
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per block: 1024
Maximum sizes of each dimension of a block: 1024 x 1024 x 64
Maximum sizes of each dimension of a grid: 2147483647 x 65535 x 65535
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: Yes
Support host page-locked memory mapping: Yes
Concurrent kernel execution: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support enabled: No
Device is using TCC driver mode: No
Device supports Unified Addressing (UVA): Yes
Device PCI Bus ID / PCI location ID: 0 / 0
Compute Mode:
Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 12.20, CUDA Runtime Version = 12.20, NumDevs = 1
None
>>>
Thanks.
This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.