Description
Can the engine model generated based on dynamic size support forward inference for images of different sizes ?
Environment
TensorRT Version: 7.2.1.6
GPU Type: 2080Ti
Nvidia Driver Version: 440
CUDA Version: 10.2
CUDNN Version: 7.6.5
Operating System + Version: centos7
Python Version (if applicable): 3.6
TensorFlow Version (if applicable): 1.14
PyTorch Version (if applicable): -
Baremetal or Container (if container which image + tag):
For example
If I want to implement model input dimension dynamics,for example:
my detection model need input images size is 12807203,6403603,3201803.
so.if I can do it in this way:
trtexec --explicitBatch --onnx=model.onnx \
--minShapes=input:1x320x180x3 \
--optShapes=input:1x640x360x3 \
--maxShapes=input:1x1280x720x3 \
--shapes=input:1x640x360x3\ # Actual inference input shape
--saveEngine=model.engine
and I don’t know what optShapes,shapes means?
can you help me ?
tanks!