There is an example TensorRT/demo/BERT/inference.ipynb at release/10.0 · NVIDIA/TensorRT · GitHub with this:
bindings = [int(d_inputs[i]) for i in range(3)] + [int(d_output)]
for i in range(engine.num_io_tensors):
context.set_tensor_address(engine.get_tensor_name(i), bindings[i])
context.execute_async_v3(stream_handle=stream.handle)
But when I try to set up bindings same way [int(d_input)] + [int(d_output)]
I got error:
TypeError: set_tensor_address(): incompatible function arguments. The following argument types are supported:
1. (self: tensorrt.tensorrt.IExecutionContext, name: str, memory: int) → bool
I used execute_async_v2()
as
bindings = [int(d_input)] + [int(d_output)]
context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
and it worked. How to make it work for execute_async_v3()?