I flash the Jetpack 3.3 and install Tensorflow via:
pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp33 tensorflow-gpu
When I run a tf session in python:
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> hello = tf.constant('hello')
>>> sess = tf.Session()
2018-11-08 00:23:57.366581: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:864] ARM64 does not support NUMA - returning NUMA node zero
2018-11-08 00:23:57.366703: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1392] Found device 0 with properties:
name: NVIDIA Tegra X2 major: 6 minor: 2 memoryClockRate(GHz): 1.3005
pciBusID: 0000:00:00.0
totalMemory: 7.66GiB freeMemory: 3.82GiB
2018-11-08 00:23:57.366749: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1471] Adding visible gpu devices: 0
2018-11-08 00:23:58.121551: I tensorflow/core/common_runtime/gpu/gpu_device.cc:952] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-11-08 00:23:58.121657: I tensorflow/core/common_runtime/gpu/gpu_device.cc:958] 0
2018-11-08 00:23:58.121689: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0: N
2018-11-08 00:23:58.121876: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1084] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 3413 MB memory) -> physical GPU (device: 0, name: NVIDIA Tegra X2, pci bus id: 0000:00:00.0, compute capability: 6.2)
The line:
2018-11-08 00:23:58.121689: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0: N
makes me feel uncomfortable, because from other’s output I find it to be:
2018-11-08 00:23:58.121689: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0: Y
where the diff is N and Y
I wonder if this is normal? When I run a semantic network, it seems like GPU is engaged by checking
sudo ~/tegrastats --interval 2000
with output shown below:
RAM 3612/7846MB (lfb 168x2MB) CPU [0%@2035,0%@2036,0%@2035,0%@2035,0%@2036,0%@2035] EMC_FREQ 18%@1866 GR3D_FREQ 96%@1300 APE 150 MTS fg 7% bg 23% BCPU@36.5C MCPU@36.5C GPU@37C PLL@36.5C Tboard@31C Tdiode@35.25C PMIC@100C thermal@36.5C VDD_IN 8875/8875 VDD_CPU 841/841 VDD_GPU 2983/2983 VDD_SOC 1147/1147 VDD_WIFI 19/19 VDD_DDR 2200/2200