Jetson Inference - Python - DetectNet - Filter class

Hi,

I try to do a filter on the class label with Jetson Inference / python / detect-camera.py –network=ssd-inception-v2

But I had not a satisfied result. Do you have an idea ?

Thanks

Hi.

I sorry but, I don’t have any idea what you want to do.
Generally, jetson nano + python running really well. Actually I porting George AI to JetsonNano I must say only a few changes in the code and George run really quick.

An idea, somebody ?

Thanks

Hi.
So here is some code what i use on Jetson Nano with GeorgeAI.

if main_mode == “Pedestrian Detection”:

                 # using a greyscale picture, also for faster detection
               gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
                 # detect people in the image
                 # returns the bounding boxes for the detected objects
               boxes, weights = hog.detectMultiScale(frame, winStride=(8,8) )
               boxes = np.array([[x, y, x + w, y + h] for (x, y, w, h) in boxes])
               for (xA, yA, xB, yB) in boxes:
                    # display the detected boxes in the colour picture
                    imk = cv2.rectangle(frame, (xA, yA), (xB, yB),
                      (0, 255, 0), 2)

                 # Write the output video 
                    frame = imk
                  # Display the resulting frame

Hi Tomas_Trnka, #4, and somebody,

Thanks for your reply.

A- I had, this code, from jetson-iference / python / example / detectnet-camera.py :

########################################################################################
#!/usr/bin/python

Copyright © 2019, NVIDIA CORPORATION. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the “Software”),

to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

import jetson.inference
import jetson.utils

import argparse
import sys

parse the command line

parser = argparse.ArgumentParser(description=“Locate objects in a live camera stream using an object detection DNN.”,
formatter_class=argparse.RawTextHelpFormatter, epilog=jetson.inference.detectNet.Usage())

parser.add_argument("–network", type=str, default=“ssd-mobilenet-v2”, help=“pre-trained model to load (see below for options)”)
parser.add_argument("–overlay", type=str, default=“box,labels,conf”, help=“detection overlay flags (e.g. --overlay=box,labels,conf)\nvalid combinations are: ‘box’, ‘labels’, ‘conf’, ‘none’”)
parser.add_argument("–threshold", type=float, default=0.5, help=“minimum detection threshold to use”)
parser.add_argument("–camera", type=str, default=“0”, help=“index of the MIPI CSI camera to use (e.g. CSI camera 0)\nor for VL42 cameras, the /dev/video device to use.\nby default, MIPI CSI camera 0 will be used.”)
parser.add_argument("–width", type=int, default=1280, help=“desired width of camera stream (default is 1280 pixels)”)
parser.add_argument("–height", type=int, default=720, help=“desired height of camera stream (default is 720 pixels)”)

try:
opt = parser.parse_known_args()[0]
except:
print("")
parser.print_help()
sys.exit(0)

load the object detection network

net = jetson.inference.detectNet(opt.network, sys.argv, opt.threshold)

create the camera and display

camera = jetson.utils.gstCamera(opt.width, opt.height, opt.camera)
display = jetson.utils.glDisplay()

process frames until user exits

while display.IsOpen():
# capture the image
img, width, height = camera.CaptureRGBA()

# detect objects in the image (with overlay)
detections = net.Detect(img, width, height, opt.overlay)

# print the detections
print("detected {:d} objects in image".format(len(detections)))

for detection in detections:
	print(detection)

# render the image
display.RenderOnce(img, width, height)

# update the title bar
display.SetTitle("{:s} | Network {:.0f} FPS".format(opt.network, net.GetNetworkFPS()))

# print out performance info
net.PrintProfilerTimes()

########################################################################################

B- How do you do for send a mail (with the image captured) when a object detected ?

Thanks for your code

Also see this post: https://devtalk.nvidia.com/default/topic/1065144/jetson-nano/jetson-nano-limiting-the-results-shown-by-the-detectnet-example-/post/5393749/#5393749

You can change the class names you wish to filter out to ‘void’ in the /data/networks/SSD-Inception-v2/ssd_coco_labels.txt file, and it will not return detections to objects that have the class name void.