I can successfully run the test app3 against my rtsp camera (hikvision). However when I try to run deepstream-app aginst multiple rtsp cameras it locks up the jetson.
I’ve made a minor change to the ‘source8_1080p_dec_infer-resnet_tracker_tiled_display_fp16_nano.txt’ config file so that I have sources from rtsp cameras (x4). See config file further below.
I have two issues:
(1) the deepstream-app seems to just see the first source and use it 4 times.
(2) the output display is fullscreen and I’m unable to alt-tab to other applications nor quit the app. Its like the whole system freezes - however the app is running well and if I walk in front of my camera it detects in real-time well… Only way I can exit is to pull the power cable out of the jetson and prey it doesn’t corrupt my sd card!
Would be nice if the tiled display used a proper window with the X in the top-left corner to kill the app.
I also notice this in the code:
" (“NOTE: To expand a source in the 2D tiled display and view object details,”
" left-click on the source.\n"
" To go back to the tiled display, right-click anywhere on the window.\n\n");
"
However left/right clicking on the display does nothing.
CONFIG FILE.
Just changed the num sources to 4 and specified the sources
Copyright (c) 2019 NVIDIA Corporation. All rights reserved.
NVIDIA Corporation and its licensors retain all intellectual property
and proprietary rights in and to this software, related documentation
and any modifications thereto. Any use, reproduction, disclosure or
distribution of this software and related documentation without an express
license agreement from NVIDIA Corporation is strictly prohibited.
[application]
enable-perf-measurement=1
perf-measurement-interval-sec=5
#gie-kitti-output-dir=streamscl
[tiled-display]
enable=1
rows=2
columns=2
width=1280
height=720
gpu-id=0
#(0): nvbuf-mem-default - Default memory allocated, specific to particular platform
#(1): nvbuf-mem-cuda-pinned - Allocate Pinned/Host cuda memory, applicable for Tesla
#(2): nvbuf-mem-cuda-device - Allocate Device cuda memory, applicable for Tesla
#(3): nvbuf-mem-cuda-unified - Allocate Unified cuda memory, applicable for Tesla
#(4): nvbuf-mem-surface-array - Allocate Surface Array memory, applicable for Jetson
nvbuf-memory-type=0
[source0]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI 4=RTSP
type=3
#uri=file://…/…/streams/sample_1080p_h264.mp4
uri=rtsp://
uri=rtsp://
uri=rtsp://
uri=rtsp://
num-sources=4
#drop-frame-interval=2
gpu-id=0
(0): memtype_device - Memory type Device
(1): memtype_pinned - Memory type Host Pinned
(2): memtype_unified - Memory type Unified
cudadec-memtype=0
[sink0]
enable=1
#Type - 1=FakeSink 2=EglSink 3=File
type=5
sync=1
source-id=0
gpu-id=0
qos=0
nvbuf-memory-type=0
overlay-id=1
[sink1]
enable=0
type=3
#1=mp4 2=mkv
container=1
#1=h264 2=h265
codec=1
sync=0
#iframeinterval=10
bitrate=2000000
output-file=out.mp4
source-id=0
[sink2]
enable=0
#Type - 1=FakeSink 2=EglSink 3=File 4=RTSPStreaming
type=4
#1=h264 2=h265
codec=1
sync=0
bitrate=4000000
set below properties in case of RTSPStreaming
rtsp-port=8554
udp-port=5400
[osd]
enable=1
gpu-id=0
border-width=1
text-size=15
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Serif
show-clock=0
clock-x-offset=800
clock-y-offset=820
clock-text-size=12
clock-color=1;0;0;0
nvbuf-memory-type=0
[streammux]
gpu-id=0
##Boolean property to inform muxer that sources are live
#live-source=0
live-source=1
batch-size=8
##time out in usec, to wait after the first buffer is available
##to push the batch even if the complete batch is not formed
batched-push-timeout=40000
Set muxer output width and height
width=1920
height=1080
##Enable to maintain aspect ratio wrt source, and allow black borders, works
##along with width, height properties
enable-padding=0
nvbuf-memory-type=0
config-file property is mandatory for any gie section.
Other properties are optional and if set will override the properties set in
the infer config file.
[primary-gie]
enable=1
gpu-id=0
model-engine-file=…/…/models/Primary_Detector_Nano/resnet10.caffemodel_b8_fp16.engine
batch-size=8
#Required by the app for OSD, not a plugin property
bbox-border-color0=1;0;0;1
bbox-border-color1=0;1;1;1
bbox-border-color2=0;0;1;1
bbox-border-color3=0;1;0;1
interval=4
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_nano.txt
[tracker]
enable=1
tracker-width=480
tracker-height=272
#ll-lib-file=/opt/nvidia/deepstream/deepstream-4.0/lib/libnvds_mot_iou.so
ll-lib-file=/opt/nvidia/deepstream/deepstream-4.0/lib/libnvds_mot_klt.so
#ll-config-file required for IOU only
#ll-config-file=iou_config.txt
gpu-id=0
[tests]
file-loop=0