On VS 2015, on a system with CUDA 8 and a proper GPU install, I did the following:
- start a new empty “general” project - console application
- set the build configuration to x64 Release
- in the project explorer window, select Source Files (folder). Right-click, select Add…C++ file (.cpp)
- double-click on the new source file (Source.cpp)
- paste in an OpenCL program, such as:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <CL/cl.h>
#define STRINGIFY(s) #s
#define CL_SUCCEED(e) (assert(e == CL_SUCCESS))
const char *kernel_cl = STRINGIFY(
__kernel void vector_add(__global const int *A, __global const int *B, __global int *C) {
// Get the index of the current element to be processed
int i = get_global_id(0);
// Do the operation
C[i] = A[i] + B[i];
});
int main(void) {
printf("started running\n");
// Create the two input vectors
int i;
const int LIST_SIZE = 1024;
int *A = (int*)malloc(sizeof(int)*LIST_SIZE);
int *B = (int*)malloc(sizeof(int)*LIST_SIZE);
for(i = 0; i < LIST_SIZE; i++) {
A[i] = i;
B[i] = LIST_SIZE - i;
}
// Load the kernel source code into the array source_str
const char *source_str = kernel_cl;
size_t source_size;
source_size = strlen(source_str);
printf("kernel loading done\n");
// Get platform and device information
cl_device_id device_id = NULL;
cl_uint ret_num_devices;
cl_uint ret_num_platforms;
cl_int ret = clGetPlatformIDs(0, NULL, &ret_num_platforms);
cl_platform_id *platforms = NULL;
platforms = (cl_platform_id*)malloc(ret_num_platforms*sizeof(cl_platform_id));
ret = clGetPlatformIDs(ret_num_platforms, platforms, NULL);
if (ret != CL_SUCCESS) {printf("ret at %d is %d\n", __LINE__, ret); CL_SUCCEED(ret);}
ret = clGetDeviceIDs( platforms[0], CL_DEVICE_TYPE_ALL, 1,
&device_id, &ret_num_devices);
if (ret != CL_SUCCESS) {printf("ret at %d is %d\n", __LINE__, ret); CL_SUCCEED(ret);}
// Create an OpenCL context
cl_context context = clCreateContext( NULL, 1, &device_id, NULL, NULL, &ret);
if (ret != CL_SUCCESS) {printf("ret at %d is %d\n", __LINE__, ret); CL_SUCCEED(ret);}
// Create a command queue
cl_command_queue command_queue = clCreateCommandQueue(context, device_id, 0, &ret);
if (ret != CL_SUCCESS) {printf("ret at %d is %d\n", __LINE__, ret); CL_SUCCEED(ret);}
// Create memory buffers on the device for each vector
cl_mem a_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY,
LIST_SIZE * sizeof(int), NULL, &ret);
cl_mem b_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY,
LIST_SIZE * sizeof(int), NULL, &ret);
cl_mem c_mem_obj = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
LIST_SIZE * sizeof(int), NULL, &ret);
// Copy the lists A and B to their respective memory buffers
ret = clEnqueueWriteBuffer(command_queue, a_mem_obj, CL_TRUE, 0,
LIST_SIZE * sizeof(int), A, 0, NULL, NULL);
if (ret != CL_SUCCESS) {printf("ret at %d is %d\n", __LINE__, ret); CL_SUCCEED(ret);}
ret = clEnqueueWriteBuffer(command_queue, b_mem_obj, CL_TRUE, 0,
LIST_SIZE * sizeof(int), B, 0, NULL, NULL);
if (ret != CL_SUCCESS) {printf("ret at %d is %d\n", __LINE__, ret); CL_SUCCEED(ret);}
printf("before building\n");
// Create a program from the kernel source
cl_program program = clCreateProgramWithSource(context, 1,
(const char **)&source_str, (const size_t *)&source_size, &ret);
if (ret != CL_SUCCESS) {printf("ret at %d is %d\n", __LINE__, ret); CL_SUCCEED(ret);}
// Build the program
ret = clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);
if (ret != CL_SUCCESS) {printf("ret at %d is %d\n", __LINE__, ret); CL_SUCCEED(ret);}
printf("after building\n");
// Create the OpenCL kernel
cl_kernel kernel = clCreateKernel(program, "vector_add", &ret);
if (ret != CL_SUCCESS) {printf("ret at %d is %d\n", __LINE__, ret); CL_SUCCEED(ret);}
// Set the arguments of the kernel
ret = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&a_mem_obj);
if (ret != CL_SUCCESS) {printf("ret at %d is %d\n", __LINE__, ret); CL_SUCCEED(ret);}
ret = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&b_mem_obj);
if (ret != CL_SUCCESS) {printf("ret at %d is %d\n", __LINE__, ret); CL_SUCCEED(ret);}
ret = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&c_mem_obj);
if (ret != CL_SUCCESS) {printf("ret at %d is %d\n", __LINE__, ret); CL_SUCCEED(ret);}
printf("before execution\n");
// Execute the OpenCL kernel on the list
size_t global_item_size = LIST_SIZE; // Process the entire lists
size_t local_item_size = 64; // Divide work items into groups of 64
ret = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL,
&global_item_size, &local_item_size, 0, NULL, NULL);
printf("after execution\n");
// Read the memory buffer C on the device to the local variable C
int *C = (int*)malloc(sizeof(int)*LIST_SIZE);
ret = clEnqueueReadBuffer(command_queue, c_mem_obj, CL_TRUE, 0,
LIST_SIZE * sizeof(int), C, 0, NULL, NULL);
printf("after copying\n");
// Display the result to the screen
for(i = 0; i < 10; i++)
printf("%d + %d = %d\n", A[i], B[i], C[i]);
// Clean up
ret = clFlush(command_queue);
ret = clFinish(command_queue);
ret = clReleaseKernel(kernel);
ret = clReleaseProgram(program);
ret = clReleaseMemObject(a_mem_obj);
ret = clReleaseMemObject(b_mem_obj);
ret = clReleaseMemObject(c_mem_obj);
ret = clReleaseCommandQueue(command_queue);
ret = clReleaseContext(context);
free(A);
free(B);
free(C);
getchar();
return 0;
}
- In project properties…C/C++…General…Additional Include Directories, add the path to your CL/cl.h file, for me I added C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include
- In project properties…Linker…Input…Additional Dependences, add your opencl lib, for me I added OpenCL.lib
- In project properties…Linker…General…Additional Library Directories, add the path to your opencl lib, for me I added C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64
Then build the code and run it.