• Hardware Platform (Jetson / GPU) : RTX 2080
• DeepStream Version : 6.0.1
• JetPack Version (valid for Jetson only) : None
• TensorRT Version : 8.0.1
• NVIDIA GPU Driver Version (valid for GPU only) : 495.29.05
• Issue Type( questions, new requirements, bugs) : questions
• How to reproduce the issue ? (This is for bugs. Including which sample app is using, the configuration files content, the command line used and other details for reproducing) : None
• Requirement details( This is for new requirement. Including the module name-for which plugin or for which sample application, the function description) : None
I am testing nvinferesrver+ONNXRuntime-backend+IInferCustomProcessor with a ONNX model which outputs string tensor.
I got the folloing error and my app fails.
I0804 01:57:34.410246 24 model_repository_manager.cc:1212] successfully loaded 'ModelName' version 1
ERROR: infer_cuda_utils.cpp:155 create cuda tensor buf fail since kString is not supported.
0:00:12.072924094 24 0x562bdb26ac70 ERROR nvinferserver gstnvinferserver.cpp:362:gst_nvinfer_server_logger:<primary_gie> nvinferserver[UID 1]: Error in addHostTensorPool() <infer_cuda_context.cpp:479> [UID = 1]: failed to create cpu tensor:modelOutputLayerName while adding tensor pool
0:00:12.072958885 24 0x562bdb26ac70 ERROR nvinferserver gstnvinferserver.cpp:362:gst_nvinfer_server_logger:<primary_gie> nvinferserver[UID 1]: Error in allocateResource() <infer_cuda_context.cpp:538> [UID = 1]: failed to allocate resource for postprocessor., nvinfer error:NVDSINFER_RESOURCE_ERROR
0:00:12.072993559 24 0x562bdb26ac70 ERROR nvinferserver gstnvinferserver.cpp:362:gst_nvinfer_server_logger:<primary_gie> nvinferserver[UID 1]: Error in initialize() <infer_base_context.cpp:109> [UID = 1]: Failed to allocate buffers
I think nvinferserver should handle string output because enum class nvdsinferserver::InferDataType
has kString
member.
Does nvinferserver support string output model?
Also note that I set output_mem_type: MEMORY_TYPE_CPU
in the setting.
The error message of create cuda tensor buf fail
is weird to me since output_mem_type (Triton native output tensor memory type) is CPU and there is no need to allocate cuda tensor to hold model outputs.