Hi!
When I run the nvcr.io/nvidia/vllm:25.11 container with GPU support, I get the following error message. Even when I start the container with --privileged, the same error still occurs.
(I have also compiled the text and images below into a PDF, hoping it will be helpful to you.)
📌
sudo docker run -d -t \
--net=host \
--gpus all \
--ipc=host \
--name vllm \
-v /home/unitree/models:/workspace/models \
--restart=unless-stopped \
1f47c643e288aeecfe37efa3d9691a801e4670321c10572c3c76975b9292c8ff
docker: Error response from daemon: failed to create task for container: failed to create shim task: OCI runtime create failed: runc create failed: unable to start container process: error during container init: error running prestart hook #0: exit status 1, stdout: , stderr: NvRmMemInitNvmap failed with Permission denied
356: Memory Manager Not supported
NvRmMemMgrInit failed error type: 196626
libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626
NvRmMemInitNvmap failed with Permission denied
356: Memory Manager Not supported
NvRmMemMgrInit failed error type: 196626
libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626
NvRmMemInitNvmap failed with Permission denied
356: Memory Manager Not supported
NvRmMemMgrInit failed error type: 196626
libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626
nvidia-container-cli: detection error: nvml error: unknown error
Run ‘docker run --help’ for more information
sudo docker run -d -t \
--net=host \
--gpus all \
–privileged \
--ipc=host \
--name vllm \
-v /home/unitree/models:/workspace/models \
--restart=unless-stopped \
[sudo] password for unitree:
d1d87ba2a83a8c2e2d6e6d53ecdc8f997a5b1275284bfe968bd94fc72b037f7f
docker: Error response from daemon: failed to create task for container: failed to create shim task: OCI runtime create failed: runc create failed: unable to start container process: error during container init: error running prestart hook #0: exit status 1, stdout: , stderr: NvRmMemInitNvmap failed with Permission denied
356: Memory Manager Not supported
NvRmMemMgrInit failed error type: 196626
libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626
NvRmMemInitNvmap failed with Permission denied
356: Memory Manager Not supported
NvRmMemMgrInit failed error type: 196626
libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626
NvRmMemInitNvmap failed with Permission denied
356: Memory Manager Not supported
NvRmMemMgrInit failed error type: 196626
libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626
nvidia-container-cli: detection error: nvml error: unknown error
Run ‘docker run --help’ for more information
This is “id ${USER}”.
📌
unitree@unitree-g1-nx:~/xp/jetson-containers$ id ${USER}
uid=1000(unitree) gid=1000(unitree) groups=1000(unitree),4(adm),24(cdrom),27(sudo),29(audio),30(dip),44(video),46(plugdev),104(render),116(i2c),120(lpadmin),135(gdm),999(gpio),996(weston-launch),136(sambashare),1001(jtop),994(docker)
This is “docker inspect nvcr.io/nvidia/vllm:25.11-py3”.
📌
unitree@unitree-g1-nx:~$ docker inspect nvcr.io/nvidia/vllm:25.11-py3
[
{
“Id”: “sha256:c94cef75a33ff40dd34d45429809d840b64f416f957fbe73af11944213b6b994”,
“RepoTags”: [
“nvcr.io/nvidia/vllm:25.11-py3”
],
“RepoDigests”: [
“nvcr.io/nvidia/vllm@sha256:c94cef75a33ff40dd34d45429809d840b64f416f957fbe73af11944213b6b994”
],
“Comment”: “buildkit.dockerfile.v0”,
“Created”: “2025-11-08T11:13:00.160179947Z”,
“Config”: {
“Env”: [
“PATH=/usr/local/lib/python3.12/dist-packages/torch_tensorrt/bin:/usr/local/cuda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/mpi/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin:/opt/tensorrt/bin”,
“NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=”,
“GDRCOPY_VERSION=2.5.1”,
“HPCX_VERSION=2.24.1”,
“MOFED_VERSION=5.4-rdmacore56.0”,
“OPENUCX_VERSION=1.19.0”,
“OPENMPI_VERSION=4.1.7”,
“RDMACORE_VERSION=56.0”,
“EFA_VERSION=1.43.1”,
“AWS_OFI_NCCL_VERSION=1.17.0”,
“OPAL_PREFIX=/opt/hpcx/ompi”,
“OMPI_MCA_coll_hcoll_enable=0”,
“CUDA_VERSION=13.0.2.006”,
“CUDA_DRIVER_VERSION=580.95.05”,
“NVVM_VERSION=13.0.88”,
“DOCA_VERSION=3.1.0”,
“_CUDA_COMPAT_PATH=/usr/local/cuda/compat”,
“ENV=/etc/shinit_v2”,
“BASH_ENV=/etc/bash.bashrc”,
“SHELL=/bin/bash”,
“NVIDIA_REQUIRE_CUDA=cuda>=9.0”,
“NCCL_VERSION=2.28.8”,
“CUBLAS_VERSION=13.1.0.3”,
“CUFFT_VERSION=12.0.0.61”,
“CURAND_VERSION=10.4.0.35”,
“CUSPARSE_VERSION=12.6.3.3”,
“CUSPARSELT_VERSION=0.8.1.1”,
“CUSOLVER_VERSION=12.0.4.66”,
“NPP_VERSION=13.0.1.2”,
“NVJPEG_VERSION=13.0.1.86”,
“CUFILE_VERSION=1.15.1.6”,
“NVJITLINK_VERSION=13.0.88”,
“NVFATBIN_VERSION=13.0.85”,
“CUBLASMP_VERSION=0.6.0.84”,
“NVSHMEM_VERSION=3.4.5”,
“CUDLA_VERSION=13.0.2.006”,
“NVPTXCOMPILER_VERSION=13.0.88”,
“CUDNN_VERSION=9.15.0.58”,
“CUDNN_FRONTEND_VERSION=1.15.0”,
“TRT_VERSION=10.14.1.48”,
“TRTOSS_VERSION=”,
“NSIGHT_SYSTEMS_VERSION=2025.5.1.121”,
“NSIGHT_COMPUTE_VERSION=2025.3.1.4”,
“DALI_VERSION=1.52.0”,
“DALI_BUILD=”,
“DALI_URL_SUFFIX=130”,
“POLYGRAPHY_VERSION=0.49.26”,
“TRANSFORMER_ENGINE_VERSION=2.9”,
“MODEL_OPT_VERSION=0.37.0”,
“CUDA_ARCH_LIST=8.0 8.6 9.0 10.0 11.0 12.0”,
“MAXSMVER=121”,
“NVRX_VERSION=0.4.1+cuda13”,
“LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64”,
“NVIDIA_VISIBLE_DEVICES=all”,
“NVIDIA_DRIVER_CAPABILITIES=compute,utility,video”,
“NVIDIA_PRODUCT_NAME=vLLM”,
“CUDA_COMPONENT_LIST=cccl crt nvrtc driver-dev culibos-dev cudart cudart-dev nvcc”,
“LIBRARY_PATH=/usr/local/cuda/lib64/stubs:”,
“VLLM_VERSION=0.11.0+582e4e37”,
“PIP_CONSTRAINT=/etc/pip/constraint.txt”,
“CUDA_HOME=/usr/local/cuda”,
“CPATH=/usr/local/cuda/include:”,
“TORCH_CUDA_ARCH_LIST=8.0 8.6 9.0 10.0 11.0 12.0+PTX”,
“TRITON_PTXAS_PATH=/usr/local/cuda/bin/ptxas”,
“TRITON_CUOBJDUMP_PATH=/usr/local/cuda/bin/cuobjdump”,
“TRITON_NVDISASM_PATH=/usr/local/cuda/bin/nvdisasm”,
“TRITON_CUDACRT_PATH=/usr/local/cuda/include”,
“TRITON_CUDART_PATH=/usr/local/cuda/include”,
“TRITON_CUPTI_PATH=/usr/local/cuda/include”,
“MAX_JOBS=12”,
“PIP_BREAK_SYSTEM_PACKAGES=1”,
“PIP_NO_BUILD_ISOLATION=1”,
“PYTORCH_TRITON_VERSION=3.5.0+git8daff01a”,
“TIKTOKEN_CACHE_DIR=/root/.cache/tiktoken_cache”,
“TIKTOKEN_RS_CACHE_DIR=/root/.cache/tiktoken_cache”,
“NVIDIA_VLLM_VERSION=25.11”,
“NVIDIA_BUILD_ID=231063344”
],
“Entrypoint”: [
“/opt/nvidia/nvidia_entrypoint.sh”
],
“WorkingDir”: “/workspace”,
“Labels”: {
“com.nvidia.build.id”: “231063344”,
“com.nvidia.build.ref”: “70a7e4b3c87282a4cb66684ed2ae82174aa991a2”,
“com.nvidia.cublas.version”: “13.1.0.3”,
“com.nvidia.cuda.version”: “9.0”,
“com.nvidia.cudnn.version”: “9.15.0.58”,
“com.nvidia.cufft.version”: “12.0.0.61”,
“com.nvidia.curand.version”: “10.4.0.35”,
“com.nvidia.cusolver.version”: “12.0.4.66”,
“com.nvidia.cusparse.version”: “12.6.3.3”,
“com.nvidia.cusparselt.version”: “0.8.1.1”,
“com.nvidia.nccl.version”: “2.28.8”,
“com.nvidia.npp.version”: “13.0.1.2”,
“com.nvidia.nvjpeg.version”: “13.0.1.86”,
“com.nvidia.vllm.version”: “0.11.0+582e4e37”,
“com.nvidia.volumes.needed”: “nvidia_driver”,
“org.opencontainers.image.ref.name”: “ubuntu”,
“org.opencontainers.image.version”: “24.04”
}
},
“Architecture”: “arm64”,
“Os”: “linux”,
“Size”: 6105891268,
“RootFS”: {
“Type”: “layers”,
“Layers”: [
“sha256:ab34259f9ca5d315bec1b17d9f1ca272e84dedd964a8988695daf0ec3e0bbc2e”,
…
“sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef”
]
},
“Metadata”: {
“LastTagTime”: “2025-12-09T06:58:27.878443023Z”
},
“Descriptor”: {
“mediaType”: “application/vnd.docker.distribution.manifest.list.v2+json”,
“digest”: “sha256:c94cef75a33ff40dd34d45429809d840b64f416f957fbe73af11944213b6b994”,
“size”: 743
}
}
]
This is “jetson_release”.
📌
unitree@unitree-g1-nx:~/xp/temp$ sudo jetson_release
Software part of jetson-stats 4.3.2 - (c) 2024, Raffaello Bonghi
Model: NVIDIA Jetson Orin NX Engineering Reference Developer Kit - Jetpack 6.2 [L4T 36.4.3]
NV Power Mode[2]: 15W
Serial Number: [XXX Show with: jetson_release -s XXX]
Hardware:
-
P-Number: p3767-0000
-
Module: NVIDIA Jetson Orin NX (16GB ram)
Platform:
-
Distribution: Ubuntu 22.04 Jammy Jellyfish
-
Release: 5.15.148-tegra
jtop:
-
Version: 4.3.2
-
Service: Active
Libraries:
-
CUDA: Not installed
-
cuDNN: Not installed
-
TensorRT: Not installed
-
VPI: Not installed
-
Vulkan: 1.3.204
-
OpenCV: 4.5.4 - with CUDA: NO
This is “cat /etc/nv_tegra_release”.
📌
unitree@unitree-g1-nx:~/xp/temp$ cat /etc/nv_tegra_release
R36 (release), REVISION: 4.3, GCID: 38968081, BOARD: generic, EABI: aarch64, DATE: Wed Jan 8 01:49:37 UTC 2025
KERNEL_VARIANT: oot
TARGET_USERSPACE_LIB_DIR=nvidia
TARGET_USERSPACE_LIB_DIR_PATH=usr/lib/aarch64-linux-gnu/nvidia
This is “nvidia-smi”.
This is “jtop”.
This is “docker --version”.
📌
unitree@unitree-g1-nx:~/xp/temp$ docker --version
Docker version 29.1.2, build 890dcca
unitree@unitree-g1-nx:~/xp/temp$ sudo systemctl status docker
● docker.service - Docker Application Container Engine
Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: enabled)
Active: active (running) since Wed 2025-12-10 17:13:43 CST; 10min ago
TriggeredBy: ● docker.socket
Docs: https://docs.docker.com
Main PID: 158962 (dockerd)
Tasks: 18
Memory: 43.4M
CPU: 1.630s
CGroup: /system.slice/docker.service
└─158962 /usr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock
This is “docker info”. As you can see, I’ve added mirror sources to the “registry-mirrors” section. This is because I’m in China and can’t pull images from docker.io directly. However, even with these mirrors, I still can’t use them.
📌
unitree@unitree-g1-nx:~/xp/temp$ docker info
Client: Docker Engine - Community
Version: 29.1.2
Context: default
Debug Mode: false
Plugins:
buildx: Docker Buildx (Docker Inc.)
Version: v0.30.1
Path: /usr/libexec/docker/cli-plugins/docker-buildx
compose: Docker Compose (Docker Inc.)
Version: v5.0.0
Path: /usr/libexec/docker/cli-plugins/docker-compose
Server:
Containers: 11
Running: 1
Paused: 0
Stopped: 10
Images: 2
Server Version: 29.1.2
Storage Driver: overlayfs
driver-type: io.containerd.snapshotter.v1
Logging Driver: json-file
Cgroup Driver: systemd
Cgroup Version: 2
Plugins:
Volume: local
Network: bridge host ipvlan macvlan null overlay
Log: awslogs fluentd gcplogs gelf journald json-file local splunk syslog
CDI spec directories:
/etc/cdi
/var/run/cdi
Swarm: inactive
Runtimes: io.containerd.runc.v2 nvidia runc
Default Runtime: nvidia
Init Binary: docker-init
containerd version: 1c4457e00facac03ce1d75f7b6777a7a851e5c41
runc version: v1.3.4-0-gd6d73eb8
init version: de40ad0
Security Options:
seccomp
Profile: builtin
cgroupns
Kernel Version: 5.15.148-tegra
Operating System: Ubuntu 22.04.5 LTS
OSType: linux
Architecture: aarch64
CPUs: 4
Total Memory: 15.29GiB
Name: unitree-g1-nx
ID: 99da6a17-d471-4816-b7f9-8457dfc89da9
Docker Root Dir: /var/lib/docker
Debug Mode: false
Experimental: false
Insecure Registries:
::1/128
127.0.0.0/8
Registry Mirrors:
https://docker.mirrors.ustc.edu.cn/
https://nvcr.io-mirror.nvidia.com/
Live Restore Enabled: false
Firewall Backend: iptables
unitree@unitree-g1-nx:~/xp/temp$ docker run --rm --gpus all nvidia/cuda:12.4.1-base-ubuntu22.04 nvidia-smi
Unable to find image ‘nvidia/cuda:12.4.1-base-ubuntu22.04’ locally
docker: Error response from daemon: failed to resolve reference “docker.io/nvidia/cuda:12.4.1-base-ubuntu22.04”: failed to do request: Head "https://hub-mirror.c.163.com/v2/nvidia/cuda/manifests/12.4.1-base-ubuntu22.04?ns=docker.io": dial tcp: lookup hub-mirror.c.163.com on 223.5.5.5:53: no such host
Run ‘docker run --help’ for more information
This is “nvidia-ctk -h”
📌
unitree@unitree-g1-nx:~/xp/temp$ nvidia-ctk -h
NAME:
NVIDIA Container Toolkit CLI - Tools to configure the NVIDIA Container Toolkit
USAGE:
nvidia-ctk [global options] command [command options] [arguments…]
VERSION:
1.13.5
commit: 6b8589dcb4dead72ab64f14a5912886e6165c079
COMMANDS:
hook A collection of hooks that may be injected into an OCI spec
runtime A collection of runtime-related utilities for the NVIDIA Container Toolkit
info Provide information about the system
cdi Provide tools for interacting with Container Device Interface specifications
system A collection of system-related utilities for the NVIDIA Container Toolkit
help, h Shows a list of commands or help for one command
GLOBAL OPTIONS:
--debug, -d Enable debug-level logging (default: false) [$NVIDIA_CTK_DEBUG]
--help, -h show help (default: false)
--version, -v print the version (default: false)
This is “nvidia-container-runtime --version”
📌
unitree@unitree-g1-nx:~/xp/temp$ nvidia-container-runtime --version
NVIDIA Container Runtime version 1.13.5
commit: 6b8589dcb4dead72ab64f14a5912886e6165c079
spec: 1.1.0-rc.2
runc version 1.3.4
commit: v1.3.4-0-gd6d73eb8
spec: 1.2.1
go: go1.24.9
libseccomp: 2.5.3
This is “jetson-containers run $(autotag vllm)”. I also tried installing vllm with jetson-containers, but it didn’t work either.
📌
unitree@unitree-g1-nx:~$ jetson-containers run $(autotag vllm)
Namespace(packages=[‘vllm’], prefer=[‘local’, ‘registry’, ‘build’], disable=[‘’], user=‘dustynv’, output=‘/tmp/autotag’, quiet=False, verbose=False)
-- L4T_VERSION=36.4.3 JETPACK_VERSION=6.2 CUDA_VERSION=12.6
-- Finding compatible container image for [‘vllm’]
V4L2_DEVICES:
- docker run --runtime nvidia -it --rm --network host --shm-size=8g --volume /tmp/argus_socket:/tmp/argus_socket --volume /etc/enctune.conf:/etc/enctune.conf --volume /etc/nv_tegra_release:/etc/nv_tegra_release --volume /tmp/nv_jetson_model:/tmp/nv_jetson_model --volume /var/run/dbus:/var/run/dbus --volume /var/run/avahi-daemon/socket:/var/run/avahi-daemon/socket --volume /var/run/docker.sock:/var/run/docker.sock --volume /home/unitree/xp/jetson-containers/data:/data -v /etc/localtime:/etc/localtime:ro -v /etc/timezone:/etc/timezone:ro --device /dev/snd -e PULSE_SERVER=unix:/run/user/1000/pulse/native -v /run/user/1000/pulse:/run/user/1000/pulse --device /dev/bus/usb --device /dev/i2c-0 --device /dev/i2c-1 --device /dev/i2c-2 --device /dev/i2c-4 --device /dev/i2c-5 --device /dev/i2c-7 --device /dev/i2c-9 -v /run/jtop.sock:/run/jtop.sock --name jetson_container_20251210_174314 nvcr.io/nvidia/vllm:25.11-py3
docker: Error response from daemon: failed to create task for container: failed to create shim task: OCI runtime create failed: runc create failed: unable to start container process: error during container init: error running prestart hook #0: exit status 1, stdout: , stderr: NvRmMemInitNvmap failed with Permission denied
356: Memory Manager Not supported
NvRmMemMgrInit failed error type: 196626
libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626
NvRmMemInitNvmap failed with Permission denied
356: Memory Manager Not supported
NvRmMemMgrInit failed error type: 196626
libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626
NvRmMemInitNvmap failed with Permission denied
356: Memory Manager Not supported
NvRmMemMgrInit failed error type: 196626
libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626
nvidia-container-cli: detection error: nvml error: unknown error
Run ‘docker run --help’ for more information
This is “jetson-containers commit hash”.
📌
unitree@unitree-g1-nx:~/xp/jetson-containers$ git rev-parse HEAD
62bc36d9efb3056b67403ed096c5df8edf7f6f8f
Project source and local modification about jetson-containers:
I cloned the jetson-containers repository through the China mirror
git clone https://gitclone.com/github.com/dusty-nv/jetson-containers.git
and the only file I changed is jetson-containers/requirements.txt.
The original line
git+https://github.com/Granulate/DockerHub-API.git
was unreachable from China, so I replaced it with
git+https://gitclone.com/github.com/Granulate/DockerHub-API.git
(all other lines remain identical).
After that I simply ran bash install.sh to set up the tool.



