NvRmMemInitNvmap failed / NVMAP permission denied when launching nvcr.io/nvidia/vllm:25.11-py3 container on Jetson Orin NX + JetPack 6.2 (L4T 36.4.3)

NvRmMemInitNvmap failed _ NVMAP permission denied when launching nvcr.io_nvidia_vllm_25.11-py3 container on Jetson Orin NX + JetPack 6.2 (L4T 36.4.3).pdf (1.2 MB)

Hi!

When I run the nvcr.io/nvidia/vllm:25.11 container with GPU support, I get the following error message. Even when I start the container with --privileged, the same error still occurs.
(I have also compiled the text and images below into a PDF, hoping it will be helpful to you.)

📌

sudo docker run -d -t \

--net=host \

--gpus all \

--ipc=host \

--name vllm \

-v /home/unitree/models:/workspace/models \

--restart=unless-stopped \

nvcr.io/nvidia/vllm:25.11-py3

1f47c643e288aeecfe37efa3d9691a801e4670321c10572c3c76975b9292c8ff

docker: Error response from daemon: failed to create task for container: failed to create shim task: OCI runtime create failed: runc create failed: unable to start container process: error during container init: error running prestart hook #0: exit status 1, stdout: , stderr: NvRmMemInitNvmap failed with Permission denied

356: Memory Manager Not supported

NvRmMemMgrInit failed error type: 196626

libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626

NvRmMemInitNvmap failed with Permission denied

356: Memory Manager Not supported

NvRmMemMgrInit failed error type: 196626

libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626

NvRmMemInitNvmap failed with Permission denied

356: Memory Manager Not supported

NvRmMemMgrInit failed error type: 196626

libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626

nvidia-container-cli: detection error: nvml error: unknown error

Run ‘docker run --help’ for more information

sudo docker run -d -t \

--net=host \

--gpus all \

–privileged \

--ipc=host \

--name vllm \

-v /home/unitree/models:/workspace/models \

--restart=unless-stopped \

nvcr.io/nvidia/vllm:25.11-py3

[sudo] password for unitree:

d1d87ba2a83a8c2e2d6e6d53ecdc8f997a5b1275284bfe968bd94fc72b037f7f

docker: Error response from daemon: failed to create task for container: failed to create shim task: OCI runtime create failed: runc create failed: unable to start container process: error during container init: error running prestart hook #0: exit status 1, stdout: , stderr: NvRmMemInitNvmap failed with Permission denied

356: Memory Manager Not supported

NvRmMemMgrInit failed error type: 196626

libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626

NvRmMemInitNvmap failed with Permission denied

356: Memory Manager Not supported

NvRmMemMgrInit failed error type: 196626

libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626

NvRmMemInitNvmap failed with Permission denied

356: Memory Manager Not supported

NvRmMemMgrInit failed error type: 196626

libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626

nvidia-container-cli: detection error: nvml error: unknown error

Run ‘docker run --help’ for more information

This is “id ${USER}”.

📌

unitree@unitree-g1-nx:~/xp/jetson-containers$ id ${USER}

uid=1000(unitree) gid=1000(unitree) groups=1000(unitree),4(adm),24(cdrom),27(sudo),29(audio),30(dip),44(video),46(plugdev),104(render),116(i2c),120(lpadmin),135(gdm),999(gpio),996(weston-launch),136(sambashare),1001(jtop),994(docker)

This is “docker inspect nvcr.io/nvidia/vllm:25.11-py3”.

📌

unitree@unitree-g1-nx:~$ docker inspect nvcr.io/nvidia/vllm:25.11-py3

[

{

“Id”: “sha256:c94cef75a33ff40dd34d45429809d840b64f416f957fbe73af11944213b6b994”,

“RepoTags”: [

nvcr.io/nvidia/vllm:25.11-py3

],

“RepoDigests”: [

nvcr.io/nvidia/vllm@sha256:c94cef75a33ff40dd34d45429809d840b64f416f957fbe73af11944213b6b994

],

“Comment”: “buildkit.dockerfile.v0”,

“Created”: “2025-11-08T11:13:00.160179947Z”,

“Config”: {

“Env”: [

“PATH=/usr/local/lib/python3.12/dist-packages/torch_tensorrt/bin:/usr/local/cuda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/mpi/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin:/opt/tensorrt/bin”,

“NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=”,

“GDRCOPY_VERSION=2.5.1”,

“HPCX_VERSION=2.24.1”,

“MOFED_VERSION=5.4-rdmacore56.0”,

“OPENUCX_VERSION=1.19.0”,

“OPENMPI_VERSION=4.1.7”,

“RDMACORE_VERSION=56.0”,

“EFA_VERSION=1.43.1”,

“AWS_OFI_NCCL_VERSION=1.17.0”,

“OPAL_PREFIX=/opt/hpcx/ompi”,

“OMPI_MCA_coll_hcoll_enable=0”,

“CUDA_VERSION=13.0.2.006”,

“CUDA_DRIVER_VERSION=580.95.05”,

“NVVM_VERSION=13.0.88”,

“DOCA_VERSION=3.1.0”,

“_CUDA_COMPAT_PATH=/usr/local/cuda/compat”,

“ENV=/etc/shinit_v2”,

“BASH_ENV=/etc/bash.bashrc”,

“SHELL=/bin/bash”,

“NVIDIA_REQUIRE_CUDA=cuda>=9.0”,

“NCCL_VERSION=2.28.8”,

“CUBLAS_VERSION=13.1.0.3”,

“CUFFT_VERSION=12.0.0.61”,

“CURAND_VERSION=10.4.0.35”,

“CUSPARSE_VERSION=12.6.3.3”,

“CUSPARSELT_VERSION=0.8.1.1”,

“CUSOLVER_VERSION=12.0.4.66”,

“NPP_VERSION=13.0.1.2”,

“NVJPEG_VERSION=13.0.1.86”,

“CUFILE_VERSION=1.15.1.6”,

“NVJITLINK_VERSION=13.0.88”,

“NVFATBIN_VERSION=13.0.85”,

“CUBLASMP_VERSION=0.6.0.84”,

“NVSHMEM_VERSION=3.4.5”,

“CUDLA_VERSION=13.0.2.006”,

“NVPTXCOMPILER_VERSION=13.0.88”,

“CUDNN_VERSION=9.15.0.58”,

“CUDNN_FRONTEND_VERSION=1.15.0”,

“TRT_VERSION=10.14.1.48”,

“TRTOSS_VERSION=”,

“NSIGHT_SYSTEMS_VERSION=2025.5.1.121”,

“NSIGHT_COMPUTE_VERSION=2025.3.1.4”,

“DALI_VERSION=1.52.0”,

“DALI_BUILD=”,

“DALI_URL_SUFFIX=130”,

“POLYGRAPHY_VERSION=0.49.26”,

“TRANSFORMER_ENGINE_VERSION=2.9”,

“MODEL_OPT_VERSION=0.37.0”,

“CUDA_ARCH_LIST=8.0 8.6 9.0 10.0 11.0 12.0”,

“MAXSMVER=121”,

“NVRX_VERSION=0.4.1+cuda13”,

“LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64”,

“NVIDIA_VISIBLE_DEVICES=all”,

“NVIDIA_DRIVER_CAPABILITIES=compute,utility,video”,

“NVIDIA_PRODUCT_NAME=vLLM”,

“CUDA_COMPONENT_LIST=cccl crt nvrtc driver-dev culibos-dev cudart cudart-dev nvcc”,

“LIBRARY_PATH=/usr/local/cuda/lib64/stubs:”,

“VLLM_VERSION=0.11.0+582e4e37”,

“PIP_CONSTRAINT=/etc/pip/constraint.txt”,

“CUDA_HOME=/usr/local/cuda”,

“CPATH=/usr/local/cuda/include:”,

“TORCH_CUDA_ARCH_LIST=8.0 8.6 9.0 10.0 11.0 12.0+PTX”,

“TRITON_PTXAS_PATH=/usr/local/cuda/bin/ptxas”,

“TRITON_CUOBJDUMP_PATH=/usr/local/cuda/bin/cuobjdump”,

“TRITON_NVDISASM_PATH=/usr/local/cuda/bin/nvdisasm”,

“TRITON_CUDACRT_PATH=/usr/local/cuda/include”,

“TRITON_CUDART_PATH=/usr/local/cuda/include”,

“TRITON_CUPTI_PATH=/usr/local/cuda/include”,

“MAX_JOBS=12”,

“PIP_BREAK_SYSTEM_PACKAGES=1”,

“PIP_NO_BUILD_ISOLATION=1”,

“PYTORCH_TRITON_VERSION=3.5.0+git8daff01a”,

“TIKTOKEN_CACHE_DIR=/root/.cache/tiktoken_cache”,

“TIKTOKEN_RS_CACHE_DIR=/root/.cache/tiktoken_cache”,

“NVIDIA_VLLM_VERSION=25.11”,

“NVIDIA_BUILD_ID=231063344”

],

“Entrypoint”: [

“/opt/nvidia/nvidia_entrypoint.sh”

],

“WorkingDir”: “/workspace”,

“Labels”: {

“com.nvidia.build.id”: “231063344”,

“com.nvidia.build.ref”: “70a7e4b3c87282a4cb66684ed2ae82174aa991a2”,

“com.nvidia.cublas.version”: “13.1.0.3”,

“com.nvidia.cuda.version”: “9.0”,

“com.nvidia.cudnn.version”: “9.15.0.58”,

“com.nvidia.cufft.version”: “12.0.0.61”,

“com.nvidia.curand.version”: “10.4.0.35”,

“com.nvidia.cusolver.version”: “12.0.4.66”,

“com.nvidia.cusparse.version”: “12.6.3.3”,

“com.nvidia.cusparselt.version”: “0.8.1.1”,

“com.nvidia.nccl.version”: “2.28.8”,

“com.nvidia.npp.version”: “13.0.1.2”,

“com.nvidia.nvjpeg.version”: “13.0.1.86”,

“com.nvidia.vllm.version”: “0.11.0+582e4e37”,

“com.nvidia.volumes.needed”: “nvidia_driver”,

“org.opencontainers.image.ref.name”: “ubuntu”,

“org.opencontainers.image.version”: “24.04”

}

},

“Architecture”: “arm64”,

“Os”: “linux”,

“Size”: 6105891268,

“RootFS”: {

“Type”: “layers”,

“Layers”: [

“sha256:ab34259f9ca5d315bec1b17d9f1ca272e84dedd964a8988695daf0ec3e0bbc2e”,

“sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef”

]

},

“Metadata”: {

“LastTagTime”: “2025-12-09T06:58:27.878443023Z”

},

“Descriptor”: {

“mediaType”: “application/vnd.docker.distribution.manifest.list.v2+json”,

“digest”: “sha256:c94cef75a33ff40dd34d45429809d840b64f416f957fbe73af11944213b6b994”,

“size”: 743

}

}

]

This is “jetson_release”.

📌

unitree@unitree-g1-nx:~/xp/temp$ sudo jetson_release

Software part of jetson-stats 4.3.2 - (c) 2024, Raffaello Bonghi

Model: NVIDIA Jetson Orin NX Engineering Reference Developer Kit - Jetpack 6.2 [L4T 36.4.3]

NV Power Mode[2]: 15W

Serial Number: [XXX Show with: jetson_release -s XXX]

Hardware:

  • P-Number: p3767-0000

  • Module: NVIDIA Jetson Orin NX (16GB ram)

Platform:

  • Distribution: Ubuntu 22.04 Jammy Jellyfish

  • Release: 5.15.148-tegra

jtop:

  • Version: 4.3.2

  • Service: Active

Libraries:

  • CUDA: Not installed

  • cuDNN: Not installed

  • TensorRT: Not installed

  • VPI: Not installed

  • Vulkan: 1.3.204

  • OpenCV: 4.5.4 - with CUDA: NO

This is “cat /etc/nv_tegra_release”.

📌

unitree@unitree-g1-nx:~/xp/temp$ cat /etc/nv_tegra_release

R36 (release), REVISION: 4.3, GCID: 38968081, BOARD: generic, EABI: aarch64, DATE: Wed Jan 8 01:49:37 UTC 2025

KERNEL_VARIANT: oot

TARGET_USERSPACE_LIB_DIR=nvidia

TARGET_USERSPACE_LIB_DIR_PATH=usr/lib/aarch64-linux-gnu/nvidia

This is “nvidia-smi”.

This is “jtop”.

This is “docker --version”.

📌

unitree@unitree-g1-nx:~/xp/temp$ docker --version

Docker version 29.1.2, build 890dcca

unitree@unitree-g1-nx:~/xp/temp$ sudo systemctl status docker

● docker.service - Docker Application Container Engine

Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: enabled)

Active: active (running) since Wed 2025-12-10 17:13:43 CST; 10min ago

TriggeredBy: ● docker.socket

Docs: https://docs.docker.com

Main PID: 158962 (dockerd)

Tasks: 18

Memory: 43.4M

CPU: 1.630s

CGroup: /system.slice/docker.service

└─158962 /usr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock

This is “docker info”. As you can see, I’ve added mirror sources to the “registry-mirrors” section. This is because I’m in China and can’t pull images from docker.io directly. However, even with these mirrors, I still can’t use them.

📌

unitree@unitree-g1-nx:~/xp/temp$ docker info

Client: Docker Engine - Community

Version: 29.1.2

Context: default

Debug Mode: false

Plugins:

buildx: Docker Buildx (Docker Inc.)

Version: v0.30.1

Path: /usr/libexec/docker/cli-plugins/docker-buildx

compose: Docker Compose (Docker Inc.)

Version: v5.0.0

Path: /usr/libexec/docker/cli-plugins/docker-compose

Server:

Containers: 11

Running: 1

Paused: 0

Stopped: 10

Images: 2

Server Version: 29.1.2

Storage Driver: overlayfs

driver-type: io.containerd.snapshotter.v1

Logging Driver: json-file

Cgroup Driver: systemd

Cgroup Version: 2

Plugins:

Volume: local

Network: bridge host ipvlan macvlan null overlay

Log: awslogs fluentd gcplogs gelf journald json-file local splunk syslog

CDI spec directories:

/etc/cdi

/var/run/cdi

Swarm: inactive

Runtimes: io.containerd.runc.v2 nvidia runc

Default Runtime: nvidia

Init Binary: docker-init

containerd version: 1c4457e00facac03ce1d75f7b6777a7a851e5c41

runc version: v1.3.4-0-gd6d73eb8

init version: de40ad0

Security Options:

seccomp

Profile: builtin

cgroupns

Kernel Version: 5.15.148-tegra

Operating System: Ubuntu 22.04.5 LTS

OSType: linux

Architecture: aarch64

CPUs: 4

Total Memory: 15.29GiB

Name: unitree-g1-nx

ID: 99da6a17-d471-4816-b7f9-8457dfc89da9

Docker Root Dir: /var/lib/docker

Debug Mode: false

Experimental: false

Insecure Registries:

::1/128

127.0.0.0/8

Registry Mirrors:

https://hub-mirror.c.163.com/

https://mirror.aliyuncs.com/

https://docker.mirrors.ustc.edu.cn/

https://nvcr.io-mirror.nvidia.com/

Live Restore Enabled: false

Firewall Backend: iptables

unitree@unitree-g1-nx:~/xp/temp$ docker run --rm --gpus all nvidia/cuda:12.4.1-base-ubuntu22.04 nvidia-smi

Unable to find image ‘nvidia/cuda:12.4.1-base-ubuntu22.04’ locally

docker: Error response from daemon: failed to resolve reference “docker.io/nvidia/cuda:12.4.1-base-ubuntu22.04”: failed to do request: Head "https://hub-mirror.c.163.com/v2/nvidia/cuda/manifests/12.4.1-base-ubuntu22.04?ns=docker.io": dial tcp: lookup hub-mirror.c.163.com on 223.5.5.5:53: no such host

Run ‘docker run --help’ for more information

This is “nvidia-ctk -h

📌

unitree@unitree-g1-nx:~/xp/temp$ nvidia-ctk -h

NAME:

NVIDIA Container Toolkit CLI - Tools to configure the NVIDIA Container Toolkit

USAGE:

nvidia-ctk [global options] command [command options] [arguments…]

VERSION:

1.13.5

commit: 6b8589dcb4dead72ab64f14a5912886e6165c079

COMMANDS:

hook A collection of hooks that may be injected into an OCI spec

runtime A collection of runtime-related utilities for the NVIDIA Container Toolkit

info Provide information about the system

cdi Provide tools for interacting with Container Device Interface specifications

system A collection of system-related utilities for the NVIDIA Container Toolkit

help, h Shows a list of commands or help for one command

GLOBAL OPTIONS:

--debug, -d Enable debug-level logging (default: false) [$NVIDIA_CTK_DEBUG]

--help, -h show help (default: false)

--version, -v print the version (default: false)

This is “nvidia-container-runtime --version

📌

unitree@unitree-g1-nx:~/xp/temp$ nvidia-container-runtime --version

NVIDIA Container Runtime version 1.13.5

commit: 6b8589dcb4dead72ab64f14a5912886e6165c079

spec: 1.1.0-rc.2

runc version 1.3.4

commit: v1.3.4-0-gd6d73eb8

spec: 1.2.1

go: go1.24.9

libseccomp: 2.5.3

This is “jetson-containers run $(autotag vllm)”. I also tried installing vllm with jetson-containers, but it didn’t work either.

📌

unitree@unitree-g1-nx:~$ jetson-containers run $(autotag vllm)

Namespace(packages=[‘vllm’], prefer=[‘local’, ‘registry’, ‘build’], disable=[‘’], user=‘dustynv’, output=‘/tmp/autotag’, quiet=False, verbose=False)

-- L4T_VERSION=36.4.3 JETPACK_VERSION=6.2 CUDA_VERSION=12.6

-- Finding compatible container image for [‘vllm’]

nvcr.io/nvidia/vllm:25.11-py3

V4L2_DEVICES:

  • docker run --runtime nvidia -it --rm --network host --shm-size=8g --volume /tmp/argus_socket:/tmp/argus_socket --volume /etc/enctune.conf:/etc/enctune.conf --volume /etc/nv_tegra_release:/etc/nv_tegra_release --volume /tmp/nv_jetson_model:/tmp/nv_jetson_model --volume /var/run/dbus:/var/run/dbus --volume /var/run/avahi-daemon/socket:/var/run/avahi-daemon/socket --volume /var/run/docker.sock:/var/run/docker.sock --volume /home/unitree/xp/jetson-containers/data:/data -v /etc/localtime:/etc/localtime:ro -v /etc/timezone:/etc/timezone:ro --device /dev/snd -e PULSE_SERVER=unix:/run/user/1000/pulse/native -v /run/user/1000/pulse:/run/user/1000/pulse --device /dev/bus/usb --device /dev/i2c-0 --device /dev/i2c-1 --device /dev/i2c-2 --device /dev/i2c-4 --device /dev/i2c-5 --device /dev/i2c-7 --device /dev/i2c-9 -v /run/jtop.sock:/run/jtop.sock --name jetson_container_20251210_174314 nvcr.io/nvidia/vllm:25.11-py3

docker: Error response from daemon: failed to create task for container: failed to create shim task: OCI runtime create failed: runc create failed: unable to start container process: error during container init: error running prestart hook #0: exit status 1, stdout: , stderr: NvRmMemInitNvmap failed with Permission denied

356: Memory Manager Not supported

NvRmMemMgrInit failed error type: 196626

libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626

NvRmMemInitNvmap failed with Permission denied

356: Memory Manager Not supported

NvRmMemMgrInit failed error type: 196626

libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626

NvRmMemInitNvmap failed with Permission denied

356: Memory Manager Not supported

NvRmMemMgrInit failed error type: 196626

libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626

nvidia-container-cli: detection error: nvml error: unknown error

Run ‘docker run --help’ for more information

This is “jetson-containers commit hash”.

📌

unitree@unitree-g1-nx:~/xp/jetson-containers$ git rev-parse HEAD

62bc36d9efb3056b67403ed096c5df8edf7f6f8f

Project source and local modification about jetson-containers:

I cloned the jetson-containers repository through the China mirror

git clone https://gitclone.com/github.com/dusty-nv/jetson-containers.git

and the only file I changed is jetson-containers/requirements.txt.

The original line

git+https://github.com/Granulate/DockerHub-API.git

was unreachable from China, so I replaced it with

git+https://gitclone.com/github.com/Granulate/DockerHub-API.git

(all other lines remain identical).

After that I simply ran bash install.sh to set up the tool.

Hi,

The container requires the SBSA GPU driver but Orin uses nvgpu instead.
Please try the container below that was built for the Orin series:

Thanks.

Hi~


I executed the following command on my local Linux x86 machine:

docker pull --platform linux/arm64 dustynv/vllm:r36.4-cu129-24.04

Then I ran:

docker inspect dustynv/vllm:r36.4-cu129-24.04

Here is the output:

root@unitree-g1-nx:/home/unitree# docker inspect dustynv/vllm:r36.4-cu129-24.04
[
{
"Id": "sha256:14b99e86bd00e940626d61919c93723bbd77a87ff3e61640a11ca55210b0dd88",
"RepoTags": [
"dustynv/vllm:r36.4-cu129-24.04"
],
"RepoDigests": [
"dustynv/vllm@sha256:14b99e86bd00e940626d61919c93723bbd77a87ff3e61640a11ca55210b0dd88"
],
"Created": "2025-07-07T02:48:58.933436399Z",
"Config": {
"Env": [
"PATH=/root/.cargo/bin:/opt/venv/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"DEBIAN_FRONTEND=noninteractive",
"LANGUAGE=en_US:en",
"LANG=en_US.UTF-8",
"LC_ALL=en_US.UTF-8",
"WGET_FLAGS=--quiet --show-progress --progress=bar:force:noscroll --no-check-certificate",
"MULTIARCH_URL=https://apt.jetson-ai-lab.dev/multiarch",
"TAR_INDEX_URL=https://apt.jetson-ai-lab.dev/jp6/cu129/24.04",
"PIP_INDEX_URL=https://pypi.jetson-ai-lab.dev/jp6/cu129",
"PIP_TRUSTED_HOST=",
"TWINE_REPOSITORY_URL=http://localhost/jp6/cu129",
"TWINE_USERNAME=jp6",
"TWINE_PASSWORD=none",
"SCP_UPLOAD_URL=localhost:/dist/jp6/cu129/24.04",
"SCP_UPLOAD_USER=None",
"SCP_UPLOAD_PASS=None",
"CUDA_HOME=/usr/local/cuda",
"NVCC_PATH=/usr/local/cuda/bin/nvcc",
"NVIDIA_VISIBLE_DEVICES=all",
"NVIDIA_DRIVER_CAPABILITIES=all",
"CUDAARCHS=87",
"CUDA_ARCHITECTURES=87",
"CUDNN_LIB_PATH=/usr/lib/aarch64-linux-gnu",
"CUDNN_LIB_INCLUDE_PATH=/usr/include",
"CMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc",
"CUDA_NVCC_EXECUTABLE=/usr/local/cuda/bin/nvcc",
"CUDACXX=/usr/local/cuda/bin/nvcc",
"TORCH_NVCC_FLAGS=-Xfatbin -compress-all",
"CUDA_BIN_PATH=/usr/local/cuda/bin",
"CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda",
"LD_LIBRARY_PATH=/usr/local/cuda/compat:/usr/local/cuda/lib64:",
"PYTHON_VERSION=3.12",
"PYTHONFAULTHANDLER=1",
"PYTHONUNBUFFERED=1",
"PYTHONIOENCODING=utf-8",
"PYTHONHASHSEED=random",
"PIP_NO_CACHE_DIR=true",
"PIP_CACHE_PURGE=true",
"PIP_ROOT_USER_ACTION=ignore",
"PIP_DISABLE_PIP_VERSION_CHECK=on",
"PIP_DEFAULT_TIMEOUT=100",
"PIP_WHEEL_DIR=/opt/wheels",
"PIP_VERBOSE=1",
"TWINE_NON_INTERACTIVE=1",
"OPENBLAS_CORETYPE=ARMV8",
"DYNAMIC_ARCH=1",
"NUMPY_PACKAGE=numpy",
"NUMPY_VERSION_MAJOR=2",
"TORCH_CUDA_ARCH_LIST=8.7",
"PIP_EXTRA_INDEX_URL=",
"TORCH_HOME=/data/models/torch",
"TRANSFORMERS_CACHE=/data/models/huggingface",
"HUGGINGFACE_HUB_CACHE=/data/models/huggingface",
"HF_HOME=/data/models/huggingface",
"TRANSFORMERS_PACKAGE=",
"TRANSFORMERS_VERSION=",
"DIFFUSERS_FORCE_DISABLE_TRITON=1",
"XFORMERS_FORCE_DISABLE_TRITON=1"
],
"Cmd": [
"/bin/bash"
],
"WorkingDir": "/",
"Labels": {
"org.opencontainers.image.ref.name": "ubuntu",
"org.opencontainers.image.version": "24.04"
}
},
"Architecture": "arm64",
"Variant": "v8",
"Os": "linux",
"Size": 17649327685,
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:ccd2cfe57c25db3597f049070e10ffe286c34a12ccaadcf69ce28543ce350979",
.....many sha256 layers.....             "sha256:222616c338ab81efc5688bc4b53e83d65099a9d0098b86326220dedec64d3235"
]
},
"Metadata": {
"LastTagTime": "2025-12-17T03:21:00.257241877Z"
},
"Descriptor": {
"mediaType": "application/vnd.docker.distribution.manifest.v2+json",
"digest": "sha256:14b99e86bd00e940626d61919c93723bbd77a87ff3e61640a11ca55210b0dd88",
"size": 12309,
"annotations": {
"io.containerd.image.name": "docker.io/dustynv/vllm:r36.4-cu129-24.04",
"org.opencontainers.image.ref.name": "r36.4-cu129-24.04"
}
}
}
]

After that, I performed the following operations on the image dustynv/vllm:r36.4-cu129-24.04 :

  • Export the image :
docker save -o /mnt/sda-20T/xupeng/docker_images/vllm-jetson.tar dustynv/vllm:r36.4-cu129-24.04
  • Transfer the image to Jetson orin nx :
rsync -avz /mnt/sda-20T/xupeng/docker_images/vllm-jetson.tar unitree@172.16.22.27:/home/unitree/xp/docker_images/
  • Change permissions :
sudo chmod -R 777 /home/unitree/xp/docker_images/
  • Load the image :
docker load -i /home/unitree/xp/docker_images/vllm-jetson.tar
  • Run the container :
docker run --rm -it --shm-size 2g --ipc host --gpus all --ulimit memlock=-1 --ulimit stack=67108864 -v  /home/unitree/models:/workspace/models -p 8000:8000 dustynv/vllm:r36.4-cu129-24.04

However, when I executed the docker run command, I encountered an error. The error message is as follows:

unitree@unitree-g1-nx:~$ docker run --rm -it --shm-size 2g --ipc host --gpus all --ulimit memlock=-1 --ulimit stack=67108864 -v  /home/unitree/models:/workspace/m
odels -p 8000:8000 dustynv/vllm:r36.4-cu129-24.04
WARNING: IPv4 forwarding is disabled. Networking will not work.
docker: Error response from daemon: failed to create task for container: failed to create shim task: OCI runtime create failed: runc create failed: unable to start container process: error during container init: error running prestart hook #0: exit status 1, stdout: , stderr: NvRmMemInitNvmap failed with Permission denied
356: Memory Manager Not supported
NvRmMemMgrInit failed error type: 196626
libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626
NvRmMemInitNvmap failed with Permission denied
356: Memory Manager Not supported
NvRmMemMgrInit failed error type: 196626
libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626
NvRmMemInitNvmap failed with Permission denied
356: Memory Manager Not supported
NvRmMemMgrInit failed error type: 196626
libnvrm_gpu.so: NvRmGpuLibOpen failed, error=196626
nvidia-container-cli: detection error: nvml error: unknown error
Run 'docker run --help' for more information

What could be the issue? I look forward to your reply. Thank you!

Hi~
I would be very grateful if you could help me with my question. I really need your help, thanks.