Hi.
I have a bit of experience with OpenCV, but is new to the Jetson and the jetson.utils API
I’m trying to run the detectnet-camera.py, but i want to use a file as input during the initial learning curve.
My understanding is that gstreamer would be the way to go, but i cannot find any examples and are not having succes.
I have tried using the classic OpenCV VideoCapture, but then i run into trouples when using data in the “net.Detect()” call
So in short - Could somebody assist me in modifying the detectnet-camera.py below to use gstreamer and take a “video.mov” file in a AAC, H.264 format, so i can get startet with something that works ;-)
import jetson.inference
import jetson.utils
import argparse
import sys
parse the command line
parser = argparse.ArgumentParser(description=“Locate objects in a live camera stream using an object detection DNN.”,
formatter_class=argparse.RawTextHelpFormatter, epilog=jetson.inference.detectNet.Usage())
parser.add_argument(“–network”, type=str, default=“ssd-mobilenet-v2”, help=“pre-trained model to load (see below for options)”)
parser.add_argument(“–overlay”, type=str, default=“box,labels,conf”, help=“detection overlay flags (e.g. --overlay=box,labels,conf)\nvalid combinations are: ‘box’, ‘labels’, ‘conf’, ‘none’”)
parser.add_argument(“–threshold”, type=float, default=0.5, help=“minimum detection threshold to use”)
parser.add_argument(“–camera”, type=str, default=“0”, help=“index of the MIPI CSI camera to use (e.g. CSI camera 0)\nor for VL42 cameras, the /dev/video device to use.\nby default, MIPI CSI camera 0 will be used.”)
parser.add_argument(“–width”, type=int, default=1280, help=“desired width of camera stream (default is 1280 pixels)”)
parser.add_argument(“–height”, type=int, default=720, help=“desired height of camera stream (default is 720 pixels)”)
try:
opt = parser.parse_known_args()[0]
except:
print(“”)
parser.print_help()
sys.exit(0)
load the object detection network
net = jetson.inference.detectNet(opt.network, sys.argv, opt.threshold)
create the camera and display
camera = jetson.utils.gstCamera(opt.width, opt.height, opt.camera)
display = jetson.utils.glDisplay()
process frames until user exits
while display.IsOpen():
# capture the image
img, width, height = camera.CaptureRGBA()
# detect objects in the image (with overlay)
detections = net.Detect(img, width, height, opt.overlay)
# print the detections
print("detected {:d} objects in image".format(len(detections)))
for detection in detections:
print(detection)
# render the image
display.RenderOnce(img, width, height)
# update the title bar
display.SetTitle("{:s} | Network {:.0f} FPS".format(opt.network, net.GetNetworkFPS()))
# print out performance info
net.PrintProfilerTimes()