Why ‘ssd-mobilenet-v2’?
I think it should be from detectnet-console.py, please look into the code.
I understand the cause. I did not specify ‘ssd-mobilenet-v2’ in the source,
but it could not load the specified “resnet10.caffemodel” so it was trying to read the default instead…
I was able to run “detectnet-console.py” improving with the below parameters.
-- input_blob 'input_1'
-- output_cvg 'conv2d_cov/Sigmoid'
-- output_bbox 'conv2d_bbox'
…But the results obtained are useless…
I detected attached ‘city_0.jpg’, but detects (2016 meaningless bbox)
Why is this?
jetson.inference – initializing Python 3.6 bindings…
jetson.inference – registering module types…
jetson.inference – done registering module types
jetson.inference – done Python 3.6 binding initialization
jetson.utils – initializing Python 3.6 bindings…
jetson.utils – registering module functions…
jetson.utils – done registering module functions
jetson.utils – registering module types…
jetson.utils – done registering module types
jetson.utils – done Python 3.6 binding initialization
[image] loaded ‘city_0.jpg’ (1024 x 512, 3 channels)
jetson.inference – PyTensorNet_New()
jetson.inference – PyDetectNet_Init()
jetson.inference – detectNet loading network using argv command line params
jetson.inference – detectNet.init() argv[0] = ‘detectnet-console.py’
jetson.inference – detectNet.init() argv[1] = ‘city_0.jpg’
jetson.inference – detectNet.init() argv[2] = ‘test.jpg’
jetson.inference – detectNet.init() argv[3] = ‘–prototxt=…/…/data/networks/Primary_Detector_Nano/resnet10.prototxt’
jetson.inference – detectNet.init() argv[4] = ‘–model=…/…/data/networks/Primary_Detector_Nano/resnet10.caffemodel’
jetson.inference – detectNet.init() argv[5] = ‘–output_cvg=conv2d_cov/Sigmoid’
jetson.inference – detectNet.init() argv[6] = ‘–output_bbox=conv2d_bbox’
jetson.inference – detectNet.init() argv[7] = ‘–input_blob=input_1’
detectNet – loading detection network model from:
– prototxt …/…/data/networks/Primary_Detector_Nano/resnet10.prototxt
– model …/…/data/networks/Primary_Detector_Nano/resnet10.caffemodel
– input_blob ‘input_1’
– output_cvg ‘conv2d_cov/Sigmoid’
– output_bbox ‘conv2d_bbox’
– mean_pixel 0.000000
– mean_binary NULL
– class_labels NULL
– threshold 0.500000
– batch_size 1
[TRT] TensorRT version 5.1.6
[TRT] loading NVIDIA plugins…
[TRT] Plugin Creator registration succeeded - GridAnchor_TRT
[TRT] Plugin Creator registration succeeded - NMS_TRT
[TRT] Plugin Creator registration succeeded - Reorg_TRT
[TRT] Plugin Creator registration succeeded - Region_TRT
[TRT] Plugin Creator registration succeeded - Clip_TRT
[TRT] Plugin Creator registration succeeded - LReLU_TRT
[TRT] Plugin Creator registration succeeded - PriorBox_TRT
[TRT] Plugin Creator registration succeeded - Normalize_TRT
[TRT] Plugin Creator registration succeeded - RPROI_TRT
[TRT] Plugin Creator registration succeeded - BatchedNMS_TRT
[TRT] completed loading NVIDIA plugins.
[TRT] detected model format - caffe (extension ‘.caffemodel’)
[TRT] desired precision specified for GPU: FASTEST
[TRT] requested fasted precision for device GPU without providing valid calibrator, disabling INT8
[TRT] native precisions detected for GPU: FP32, FP16
[TRT] selecting fastest native precision for GPU: FP16
[TRT] attempting to open engine cache file …/…/data/networks/Primary_Detector_Nano/resnet10.caffemodel.1.1.GPU.FP16.engine
[TRT] cache file not found, profiling network model on device GPU
[TRT] device GPU, loading …/…/data/networks/Primary_Detector_Nano/resnet10.prototxt …/…/data/networks/Primary_Detector_Nano/resnet10.caffemodel
[TRT] retrieved Output tensor “conv2d_cov/Sigmoid”: 4x17x30
[TRT] retrieved Output tensor “conv2d_bbox”: 16x17x30
[TRT] retrieved Input tensor “input_1”: 3x272x480
jetson.inference.init.py
jetson.utils.init.py
detected 2016 objects in image
<detectNet.Detection object>
– ClassID: 0
– Confidence: 24.5156
– Left: 2.13333
– Top: 4.46564e-09
– Right: 0.747566
– Bottom: 0.00201247
– Width: -1.38577
– Height: 0.00201247
– Area: -0.00278881
– Center: (1.44045, 0.00100624)
************************************************Omission (There are 2014 useless objects with no size)
<detectNet.Detection object>
– ClassID: 3
– Confidence: 10.3906
– Left: 991.679
– Top: 481.882
– Right: 989.867
– Bottom: 481.882
– Width: -1.81195
– Height: 0
– Area: -0
– Center: (990.773, 481.882)
[TRT] device GPU, configuring CUDA engine
[TRT] device GPU, building FP16: ON
[TRT] device GPU, building INT8: OFF
[TRT] device GPU, building CUDA engine (this may take a few minutes the first time a network is loaded)
[TRT] device GPU, completed building CUDA engine
[TRT] network profiling complete, writing engine cache to …/…/data/networks/Primary_Detector_Nano/resnet10.caffemodel.1.1.GPU.FP16.engine
[TRT] device GPU, completed writing engine cache to …/…/data/networks/Primary_Detector_Nano/resnet10.caffemodel.1.1.GPU.FP16.engine
[TRT] device GPU, …/…/data/networks/Primary_Detector_Nano/resnet10.caffemodel loaded
[TRT] device GPU, CUDA engine context initialized with 3 bindings
[TRT] binding – index 0
– name ‘input_1’
– type FP32
– in/out INPUT
– # dims 3
– dim #0 3 (CHANNEL)
– dim #1 272 (SPATIAL)
– dim #2 480 (SPATIAL)
[TRT] binding – index 1
– name ‘conv2d_bbox’
– type FP32
– in/out OUTPUT
– # dims 3
– dim #0 16 (CHANNEL)
– dim #1 17 (SPATIAL)
– dim #2 30 (SPATIAL)
[TRT] binding – index 2
– name ‘conv2d_cov/Sigmoid’
– type FP32
– in/out OUTPUT
– # dims 3
– dim #0 4 (CHANNEL)
– dim #1 17 (SPATIAL)
– dim #2 30 (SPATIAL)
[TRT] binding to input 0 input_1 binding index: 0
[TRT] binding to input 0 input_1 dims (b=1 c=3 h=272 w=480) size=1566720
[TRT] binding to output 0 conv2d_cov/Sigmoid binding index: 2
[TRT] binding to output 0 conv2d_cov/Sigmoid dims (b=1 c=4 h=17 w=30) size=8160
[TRT] binding to output 1 conv2d_bbox binding index: 1
[TRT] binding to output 1 conv2d_bbox dims (b=1 c=16 h=17 w=30) size=32640
device GPU, …/…/data/networks/Primary_Detector_Nano/resnet10.caffemodel initialized.
detectNet – number object classes: 4
detectNet – maximum bounding boxes: 2040
[cuda] cudaDetectionOverlay((float4*)input, (float4*)output, width, height, detections, numDetections, (float4*)mClassColors[1])
[cuda] invalid configuration argument (error 9) (hex 0x09)
[cuda] /home/gk40002251/jetson-inference/c/detectNet.cpp:945
[TRT] detectNet::Detect() – failed to render overlay
[TRT] ------------------------------------------------
[TRT] Timing Report …/…/data/networks/Primary_Detector_Nano/resnet10.caffemodel
[TRT] ------------------------------------------------
[TRT] Pre-Process CPU 0.12172ms CUDA 0.80625ms
[TRT] Network CPU 20.92214ms CUDA 20.25526ms
[TRT] Post-Process CPU 166.44992ms CUDA 166.67921ms
[cuda] cudaEventElapsedTime(&cuda_time, mEventsGPU[evt], mEventsGPU[evt+1])
[cuda] invalid resource handle (error 33) (hex 0x21)
[cuda] /home/gk40002251/jetson-inference/build/aarch64/include/jetson-inference/tensorNet.h:499
[TRT] Visualize CPU 0.00000ms CUDA 0.00000ms
[TRT] Total CPU 187.49377ms CUDA 187.74072ms
[TRT] ------------------------------------------------
[TRT] note – when processing a single image, run ‘sudo jetson_clocks’ before
to disable DVFS for more accurate profiling/timing measurements
jetson.utils – freeing CUDA mapped memory
PyTensorNet_Dealloc()
jetson.inference – PyDetection_Dealloc()
************************************************Omission(Large amount of Dealloc)