Description
please read the problem to the end to check all my trials
I am trying to convert my onnx deeplearning model to engine using trt8.0.1.6 through this docker image here ,
The model is giving me this error, verbose is attached:
[11/09/2021-08:47:47] [V] [TRT] Deleting timing cache: 1816 entries, 4264 hits
[11/09/2021-08:47:47] [I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +0, now: CPU 2626, GPU 1824 (MiB)
[11/09/2021-08:47:47] [E] Error[1]: Unexpected exception std::bad_alloc
[11/09/2021-08:47:47] [E] Error[2]: [builder.cpp::buildSerializedNetwork::417] Error Code 2: Internal Error (Assertion enginePtr != nullptr failed.)
Segmentation fault (core dumped)
I’ve converted this onnx model using both trt7 and trt7.2 successfully,
and I’ve converted yolo model through the trt8 container successfully,
So both the model and the image are okai,
here’s the command I used while converting the model on RTX3090 machine
trtexec --onnx=crowd_dynamic_1-4.onnx --explicitBatch --saveEngine=cc_trt8.engine --workspace=12288 --fp16 --optShapes=input:1x3x720x1280 --maxShapes=input:1x3x720x1280 --minShapes=input:1x3x720x1280 --shapes=input:1x3x720x1280 --verbose
I used many different workspace sizes from 3 GB up to 20 GB and they’ll give me the same segmentation error
Environment
TensorRT Version: 8.0.1.6
GPU Type: RTX3090
Nvidia Driver Version: 495
CUDA Version: nvcc version tell 11.4, but nvidia-smi tells 11.5
CUDNN Version: couldn’t get it
Operating System + Version: Ubuntu 18.04
Python Version (if applicable): python3.8.10
PyTorch Version (if applicable): tried different (1.3, 1.5, 1.6 and 1.7)
Baremetal or Container (if container which image + tag): this image: ::
Attached files:
The command I used again:
trtexec --onnx=crowd_dynamic_1-4.onnx --explicitBatch --saveEngine=cc_trt8.engine --workspace=12288 --fp16 --optShapes=input:1x3x720x1280 --maxShapes=input:1x3x720x1280 --minShapes=input:1x3x720x1280 --shapes=input:1x3x720x1280 --verbose
The verbose is attached
verbose.txt (911.4 KB)