• How to reproduce the issue ? (This is for bugs. Including which sample app is using, the configuration files content, the command line used and other details for reproducing) : Ensure above setup and install above github labries, it will generate same error
• Requirement details( This is for new requirement. Including the module name-for which plugin or for which sample application, the function description)
please refer to this compatibility table. the Jetpack version should be 6.0 GA.
if still can’t work. without any code and cfg modificaiton, will the app crash? could you share a whole log? can you use gdb to get a crash stack?
Starting program: /usr/bin/deepstream-app -c deepstream_app_config.txt
[Thread debugging using libthread_db enabled]
Using host libthread_db library “/lib/aarch64-linux-gnu/libthread_db.so.1”.
[New Thread 0xffffc86a4840 (LWP 30491)]
[New Thread 0xffff85919840 (LWP 30492)]
[New Thread 0xffff85109840 (LWP 30493)]
[New Thread 0xffff848f9840 (LWP 30494)]
[New Thread 0xffff77ff9840 (LWP 30495)]
[New Thread 0xffff777e9840 (LWP 30496)]
[New Thread 0xffff76fd9840 (LWP 30497)]
[New Thread 0xffff767c9840 (LWP 30498)]
[New Thread 0xffff75fb9840 (LWP 30499)]
Setting min object dimensions as 16x16 instead of 1x1 to support VIC compute mode.
WARNING: [TRT]: Using an engine plan file across different models of devices is not recommended and is likely to affect performance or even cause errors.
0:00:08.059148272 30489 0xaaaaf6e7b420 INFO nvinfer gstnvinfer.cpp:682:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::deserializeEngineAndBackend() <nvdsinfer_context_impl.cpp:2095> [UID = 1]: deserialized trt engine from :/home/paymentinapp/DeepStream-Yolo-Seg/yolov8s-seg.onnx_b1_gpu0_fp32.engine
WARNING: [TRT]: The getMaxBatchSize() function should not be used with an engine built from a network created with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag. This function will always return 1.
INFO: [Implicit Engine Info]: layers num: 3
0 INPUT kFLOAT images 3x640x640
1 OUTPUT kHALF output1 32x160x160
2 OUTPUT kHALF output0 116x8400
NOTE: To expand a source in the 2D tiled display and view object details, left-click on the source.
To go back to the tiled display, right-click anywhere on the window.
Thread 11 “deepstream-app” received signal SIGSEGV, Segmentation fault.
[Switching to Thread 0xffff75099840 (LWP 30503)]
0x0000ffffc02d5d18 in decodeTensorYoloSeg(float const*, float const*, float const*, float const*, unsigned int const&, unsigned int const&, unsigned int const&, unsigned int const&, unsigned int const&, std::vector<float, std::allocator > const&) () from /home/paymentinapp/DeepStream-Yolo-Seg/nvdsinfer_custom_impl_Yolo_seg/libnvdsinfer_custom_impl_Yolo_seg.so
(gdb) bt #0 0x0000ffffc02d5d18 in decodeTensorYoloSeg(float const*, float const*, float const*, float const*, unsigned int const&, unsigned int const&, unsigned int const&, unsigned int const&, unsigned int const&, std::vector<float, std::allocator > const&) ()
at /home/paymentinapp/DeepStream-Yolo-Seg/nvdsinfer_custom_impl_Yolo_seg/libnvdsinfer_custom_impl_Yolo_seg.so #1 0x0000ffffc02d5ff4 in NvDsInferParseCustomYoloSeg(std::vector<NvDsInferLayerInfo, std::allocator > const&, NvDsInferNetworkInfo const&, NvDsInferParseDetectionParams const&, std::vector<NvDsInferInstanceMaskInfo, std::allocator >&) ()
at /home/paymentinapp/DeepStream-Yolo-Seg/nvdsinfer_custom_impl_Yolo_seg/libnvdsinfer_custom_impl_Yolo_seg.so #2 0x0000ffffc02d608c in NvDsInferParseYoloSeg ()
at /home/paymentinapp/DeepStream-Yolo-Seg/nvdsinfer_custom_impl_Yolo_seg/libnvdsinfer_custom_impl_Yolo_seg.so #3 0x0000ffffc0d7cb08 in ()
at /opt/nvidia/deepstream/deepstream-7.0/lib/libnvds_infer.so #4 0x0000ffffc0d5f714 [PAC] in ()
at /opt/nvidia/deepstream/deepstream-7.0/lib/libnvds_infer.so #5 0x0000ffffc0d6055c [PAC] in ()
at /opt/nvidia/deepstream/deepstream-7.0/lib/libnvds_infer.so #6 0x0000ffffc0d60ed8 [PAC] in nvdsinfer::NvDsInferContextImpl::dequeueOutputBatch(NvDsInferContextBatchOutput&) ()
–Type for more, q to quit, c to continue without paging–RET
b/libnvds_infer.so #7 0x0000ffffc0e97db8 [PAC] in () at /usr/lib/aarch64-linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_infer.so #8 0x0000fffff7c88064 in g_thread_proxy (data=0xaaaaf4d94610) at …/glib/gthread.c:831 #9 0x0000fffff6b7d5c8 in start_thread (arg=0x0) at ./nptl/pthread_create.c:442 #10 0x0000fffff6be5edc in thread_start () at …/sysdeps/unix/sysv/linux/aarch64/clone.S:79
Gdb: Run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /usr/bin/deepstream-app -c deepstream_app_config.txt
[Thread debugging using libthread_db enabled]
Using host libthread_db library “/lib/aarch64-linux-gnu/libthread_db.so.1”.
[New Thread 0xffffc86a4840 (LWP 30571)]
[New Thread 0xffff85919840 (LWP 30572)]
[New Thread 0xffff85109840 (LWP 30573)]
[New Thread 0xffff848f9840 (LWP 30574)]
[New Thread 0xffff77ff9840 (LWP 30575)]
[New Thread 0xffff777e9840 (LWP 30576)]
[New Thread 0xffff76fd9840 (LWP 30577)]
[New Thread 0xffff767c9840 (LWP 30578)]
[New Thread 0xffff75fb9840 (LWP 30579)]
Setting min object dimensions as 16x16 instead of 1x1 to support VIC compute mode.
WARNING: [TRT]: Using an engine plan file across different models of devices is not recommended and is likely to affect performance or even cause errors.
0:00:07.447252266 30570 0xaaaaf6e7b420 INFO nvinfer gstnvinfer.cpp:682:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::deserializeEngineAndBackend() <nvdsinfer_context_impl.cpp:2095> [UID = 1]: deserialized trt engine from :/home/paymentinapp/DeepStream-Yolo-Seg/yolov8s-seg.onnx_b1_gpu0_fp32.engine
WARNING: [TRT]: The getMaxBatchSize() function should not be used with an engine built from a network created with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag. This function will always return 1.
INFO: [Implicit Engine Info]: layers num: 3
0 INPUT kFLOAT images 3x640x640
1 OUTPUT kHALF output1 32x160x160
2 OUTPUT kHALF output0 116x8400
NOTE: To expand a source in the 2D tiled display and view object details, left-click on the source.
To go back to the tiled display, right-click anywhere on the window.
Thread 11 “deepstream-app” received signal SIGSEGV, Segmentation fault.
[Switching to Thread 0xffff75099840 (LWP 30580)]
0x0000ffffc02d5d18 in decodeTensorYoloSeg(float const*, float const*, float const*, float const*, unsigned int const&, unsigned int const&, unsigned int const&, unsigned int const&, unsigned int const&, std::vector<float, std::allocator > const&) () from /home/paymentinapp/DeepStream-Yolo-Seg/nvdsinfer_custom_impl_Yolo_seg/libnvdsinfer_custom_impl_Yolo_seg.so
from the log, the model only has two output layers, but the code needs four layers. so the model and code are inconsistent. if the model is correct, you need to correct the code.
I generated a yolov8-seg model according to this link. the model has four output layers. please check why your model has two layers. it seems it is a detection model, not a segmentation model.