Yolov8 model on a custom dataset used as sgie returns Segmentation fault (core dumped)

• Hardware Platform (Jetson / GPU) - GeForce RTX 2080 Ti
• DeepStream Version - 6.3
• TensorRT Version - 8.6.1
• NVIDIA GPU Driver Version (valid for GPU only) - 535.161.07

I trained a Yolov8n model on a custom dataset, for license plate detection and i want to use it as secondary model. Primary model was a Yolov8m too, from: DeepStream-Yolo/config_infer_primary_yoloV8.txt at master · marcoslucianops/DeepStream-Yolo · GitHub.

I get segmentation fault when i add my trained yolov8n for plates as secondary model in pipeline. I mention that i downloaded the .pt and convert it in .onnx same as for primary model python3 export_yoloV8.py -w yolov8s.pt --dynamic

This is pgie config

[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
model-color-format=0
onnx-file=/opt/nvidia/deepstream/deepstream-6.3/sources/deepstream_python_apps/apps/DeepStream-Yolo/yolov8m.onnx
model-engine-file=/opt/nvidia/deepstream/deepstream-6.3/sources/deepstream_python_apps/apps/DeepStream-Yolo/model_b1_gpu0_fp32.engine
labelfile-path=labels.txt
filter-out-class-ids=1;4;6;8;9;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;26;27;28;29;30;31;32;33;34;35;36;37;38;39;40;41;42;43;44;45;46;47;48;49;50;51;52;53;54;55;56;57;58;59;60;61;62;63;64;65;66;67;68;69;70;71;72;73;74;75;76;77;78;79
batch-size=1
network-mode=0
num-detected-classes=80
interval=0
gie-unique-id=1
process-mode=1
network-type=0
cluster-mode=2
maintain-aspect-ratio=1
symmetric-padding=1
#workspace-size=2000
parse-bbox-func-name=NvDsInferParseYolo
#parse-bbox-func-name=NvDsInferParseYoloCuda
custom-lib-path=nvdsinfer_custom_impl_Yolo/libnvdsinfer_custom_impl_Yolo.so
engine-create-func-name=NvDsInferYoloCudaEngineGet

[class-attrs-all]
nms-iou-threshold=0.45
pre-cluster-threshold=0.25
topk=300

and this is sgie config:

[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
model-color-format=0
onnx-file=/opt/nvidia/deepstream/deepstream-6.3/sources/deepstream_python_apps/apps/DeepStream-Yolo/best.onnx
model-engine-file=lpr.onnx_b1_gpu0_fp32.engine
#int8-calib-file=calib.table
labelfile-path=labels.txt
batch-size=1
network-mode=0
num-detected-classes=1
interval=0
gie-unique-id=2
operate-on-gie-id=1
operate-on-class-ids=2
process-mode=1
network-type=3
cluster-mode=4
maintain-aspect-ratio=1
symmetric-padding=1
#workspace-size=2000
parse-bbox-instance-mask-func-name=NvDsInferParseYolo
#parse-bbox-func-name=NvDsInferParseYolo
custom-lib-path=nvdsinfer_custom_impl_Yolo/libnvdsinfer_custom_impl_Yolo.so
#engine-create-func-name=NvDsInferYoloCudaEngineGet


[class-attrs-all]
pre-cluster-threshold=0.25
topk=300

There is no update from you for a period, assuming this is not an issue any more. Hence we are closing this topic. If need further support, please open a new one. Thanks.

can you share the whole log? can you use gdb to get the crash stack?

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.