TensorRT Version7.2.1.6
Quadro RTX 5000 dual GPU
Driver Version: 455.23.05
CUDA Version: 11.1
Ubuntu 18.04
python 3.6
Yolo_v4
nvidia/tao/tao-toolkit-tf:
docker_registry: nvcr.io
docker_tag: v3.21.08-py3
I am converting etlt to trt and using yolo v4 sample
> # Convert to TensorRT engine (INT8).
> !tlt tlt-converter -k $KEY \
> -d 3,384,1248 \
> -o BatchedNMS \
> -c $USER_EXPERIMENT_DIR/export/cal.bin \
> -e $USER_EXPERIMENT_DIR/export/trt.engine \
> -b 8 \
> -m 16 \
> -t int8 \
> -i nchw \
> $USER_EXPERIMENT_DIR/export/yolov4_resnet18_epoch_070.etlt
/home/vaaan/.local/lib/python3.7/site-packages/tlt/init.py:20: DeprecationWarning:
The nvidia-tlt
package will be deprecated soon. Going forward please migrate to using the nvidia-tao
package.
warnings.warn(message, DeprecationWarning)
~/.tao_mounts.json wasn’t found. Falling back to obtain mount points and docker configs from ~/.tlt_mounts.json.
Please note that this will be deprecated going forward.
usage: tao [-h]
{list,stop,info,augment,bpnet,classification,converter,detectnet_v2,dssd,emotionnet,faster_rcnn,fpenet,gazenet,gesturenet,heartratenet,intent_slot_classification,lprnet,mask_rcnn,multitask_classification,n_gram,punctuation_and_capitalization,question_answering,retinanet,speech_to_text,speech_to_text_citrinet,ssd,text_classification,token_classification,unet,yolo_v3,yolo_v4}
…
tao: error: invalid choice: ‘tlt-converter’ (choose from ‘list’, ‘stop’, ‘info’, ‘augment’, ‘bpnet’, ‘classification’, ‘converter’, ‘detectnet_v2’, ‘dssd’, ‘emotionnet’, ‘faster_rcnn’, ‘fpenet’, ‘gazenet’, ‘gesturenet’, ‘heartratenet’, ‘intent_slot_classification’, ‘lprnet’, ‘mask_rcnn’, ‘multitask_classification’, ‘n_gram’, ‘punctuation_and_capitalization’, ‘question_answering’, ‘retinanet’, ‘speech_to_text’, ‘speech_to_text_citrinet’, ‘ssd’, ‘text_classification’, ‘token_classification’, ‘unet’, ‘yolo_v3’, ‘yolo_v4’)
I am getting this error. can you help me solve this