Dear guys,
any idea why this happen? I have the feeling this happen because i try to train object class “person & face” in same model, is this not possible?
Error:
2020-06-30 21:54:27,842 [INFO] iva.detectnet_v2.scripts.train: Found 45 samples in validation set
2020-06-30 21:55:21,484 [INFO] /usr/local/lib/python2.7/dist-packages/iva/detectnet_v2/tfhooks/task_progress_monitor_hook.pyc: Epoch 0/120: loss: 0.10135 Time taken: 0:00:00 ETA: 0:00:00
2020-06-30 21:55:35,892 [INFO] /usr/local/lib/python2.7/dist-packages/iva/detectnet_v2/tfhooks/sample_counter_hook.pyc: Samples / sec: 4.563
2020-06-30 21:55:41,171 [INFO] /usr/local/lib/python2.7/dist-packages/iva/detectnet_v2/tfhooks/sample_counter_hook.pyc: Samples / sec: 18.945
Traceback (most recent call last):
File "/usr/local/bin/tlt-train-g1", line 8, in <module>
sys.exit(main())
File "./common/magnet_train.py", line 47, in main
File "<decorator-gen-2>", line 2, in main
File "./detectnet_v2/utilities/timer.py", line 46, in wrapped_fn
File "./detectnet_v2/scripts/train.py", line 667, in main
File "./detectnet_v2/scripts/train.py", line 591, in run_experiment
File "./detectnet_v2/scripts/train.py", line 525, in train_gridbox
File "./detectnet_v2/scripts/train.py", line 144, in run_training_loop
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/monitored_session.py", line 676, in run
run_metadata=run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/monitored_session.py", line 1270, in run
raise six.reraise(*original_exc_info)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/monitored_session.py", line 1255, in run
return self._sess.run(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/monitored_session.py", line 1327, in run
run_metadata=run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/monitored_session.py", line 1091, in run
return self._sess.run(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 929, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1152, in _run
feed_dict_tensor, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1328, in _do_run
run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1348, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: bboxes class ID out of range [0, 2[, got-1
[[node BboxRasterizer_2/RasterizeBbox (defined at <string>:159) ]]
[[node add_100 (defined at ./detectnet_v2/model/detectnet_model.py:525) ]]
Train config:
random_seed: 42
dataset_config {
data_sources {
tfrecords_path: "/workspace/tlt-experiments/data/tfrecords/kitti_trainval/*"
image_directory_path: "/workspace/tlt-experiments/data/training"
}
image_extension: "jpg"
target_class_mapping {
key: "person"
value: "person"
}
target_class_mapping {
key: "face"
value: "face"
}
target_class_mapping {
key: "cart"
value: "cart"
}
validation_fold: 0
}
augmentation_config {
preprocessing {
output_image_width: 960
output_image_height: 544
min_bbox_width: 1.0
min_bbox_height: 1.0
output_image_channel: 3
}
spatial_augmentation {
hflip_probability: 0.5
zoom_min: 1.0
zoom_max: 1.0
translate_max_x: 8.0
translate_max_y: 8.0
}
color_augmentation {
hue_rotation_max: 25.0
saturation_shift_max: 0.20000000298
contrast_scale_max: 0.10000000149
contrast_center: 0.5
}
}
postprocessing_config {
target_class_config {
key: "person"
value {
clustering_config {
coverage_threshold: 0.00499999988824
dbscan_eps: 0.20000000298
dbscan_min_samples: 0.0500000007451
minimum_bounding_box_height: 20
}
}
}
target_class_config {
key: "face"
value {
clustering_config {
coverage_threshold: 0.00499999988824
dbscan_eps: 0.15000000596
dbscan_min_samples: 0.0500000007451
minimum_bounding_box_height: 20
}
}
}
}
model_config {
pretrained_model_file: "/workspace/tlt-experiments/detectnet_v2/pretrained_resnet18/tlt_pretrained_detectnet_v2_vresnet18/resnet18.hdf5"
num_layers: 18
use_batch_norm: true
objective_set {
bbox {
scale: 35.0
offset: 0.5
}
cov {
}
}
training_precision {
backend_floatx: FLOAT32
}
arch: "resnet"
}
evaluation_config {
validation_period_during_training: 10
first_validation_epoch: 30
minimum_detection_ground_truth_overlap {
key: "person"
value: 0.699999988079
}
minimum_detection_ground_truth_overlap {
key: "face"
value: 0.5
}
evaluation_box_config {
key: "person"
value {
minimum_height: 20
maximum_height: 9999
minimum_width: 10
maximum_width: 9999
}
}
evaluation_box_config {
key: "face"
value {
minimum_height: 20
maximum_height: 9999
minimum_width: 10
maximum_width: 9999
}
}
average_precision_mode: INTEGRATE
}
cost_function_config {
target_classes {
name: "person"
class_weight: 1.0
coverage_foreground_weight: 0.0500000007451
objectives {
name: "cov"
initial_weight: 1.0
weight_target: 1.0
}
objectives {
name: "bbox"
initial_weight: 10.0
weight_target: 10.0
}
}
target_classes {
name: "face"
class_weight: 8.0
coverage_foreground_weight: 0.0500000007451
objectives {
name: "cov"
initial_weight: 1.0
weight_target: 1.0
}
objectives {
name: "bbox"
initial_weight: 10.0
weight_target: 1.0
}
}
enable_autoweighting: true
max_objective_weight: 0.999899983406
min_objective_weight: 9.99999974738e-05
}
training_config {
batch_size_per_gpu: 4
num_epochs: 120
learning_rate {
soft_start_annealing_schedule {
min_learning_rate: 5e-06
max_learning_rate: 5e-04
soft_start: 0.10000000149
annealing: 0.699999988079
}
}
regularizer {
type: L1
weight: 3.00000002618e-09
}
optimizer {
adam {
epsilon: 9.99999993923e-09
beta1: 0.899999976158
beta2: 0.999000012875
}
}
cost_scaling {
initial_exponent: 20.0
increment: 0.005
decrement: 1.0
}
checkpoint_interval: 10
}
bbox_rasterizer_config {
target_class_config {
key: "person"
value {
cov_center_x: 0.5
cov_center_y: 0.5
cov_radius_x: 0.40000000596
cov_radius_y: 0.40000000596
bbox_min_radius: 1.0
}
}
target_class_config {
key: "face"
value {
cov_center_x: 0.5
cov_center_y: 0.5
cov_radius_x: 1.0
cov_radius_y: 1.0
bbox_min_radius: 1.0
}
}
deadzone_radius: 0.400000154972
}
Thanks for help / info.