Hello everyone
I deployed customized pose estimation models (YOLO-Pose with Yolov8-Pose cose) on Jetson and accelerated it with Deepstream + TensorRT , feel free to refer to it and feedback better acceleration suggestions!
Environment
TensorRT Version : 8.5.2
GPU Type : J etson AGX Xavier / AGX Orin
Nvidia Driver Version :
CUDA Version : 11.4.315
CUDNN Version : 8.6.0.166
Operating System + Version : 35.2.1 ( Jetpack: 5.1)
Python Version (if applicable) : Python 3.8.10
TensorFlow Version (if applicable) :
PyTorch Version (if applicable) : 1.12.0a0+2c916ef.nv22.3
Baremetal or Container (if container which image + tag) :
Relevant Files
https://github.com/YunghuiHsu/deepstream-yolo-pose
Steps To Reproduce
Environment Setting plz refer https://github.com/YunghuiHsu/deepstream-yolo-pose
Download Ripository
git clone https://github.com/YunghuiHsu/deepstream-yolo-pose.git
To run the app with default settings:
-
NVInfer with rtsp inputs
python3 deepstream_YOLOv8-Pose_rtsp.py \ -i rtsp://sample_1.mp4 \ rtsp://sample_2.mp4 \ rtsp://sample_N.mp4 \
-
eg: loop with local file inputs
python3 deepstream_YOLOv8-Pose_rtsp.py \ -i file:///home/ubuntu/video1.mp4 file:///home/ubuntu/video2.mp4 \ --file-loop
-
Default RTSP streaming location:
rtsp://<server IP>:8554/ds-test
- VLC Player on client suggested(Camera Streaming and Multimedia)
Note:
- if
-g/--pgie
: uses nvinfer as default. ([‘nvinfer’, ‘nvinferserver’]). -config/--config-file
: need to be provided for custom models.--file-loop
: option can be used to loop input files after EOS.--conf-thres
: Objec Confidence Threshold--iou-thres
: IOU Threshold for NMS
This sample app is derived from NVIDIA-AI-IOT/deepstream_python_apps/apps and adds customization features
-
Includes following :
-
Accepts multiple sources
-
Dynamic batch model(YOLO-POSE)
-
Accepts RTSP stream as input and gives out inference as RTSP stream
-
NVInfer GPU inference engine
-
NVInferserver GPU inference engine(Not yet tested)
-
MultiObjectTracker(NVTracker)
-
Automatically adjusts the tensor shape of the loaded input and output (
NvDsInferTensorMeta
) -
Extract the stream metadata,
image datafrom the batched buffer ofGst-nvinfer
source : deepstream-imagedata-multistream
-