I am getting a a 0.0 average precision during a detectnet_v2 training.
Command:
!tao model detectnet_v2 train -e $SPECS_DIR/detectnet_v2_train_resnet18_kitti-1Class.txt \
-r $USER_EXPERIMENT_DIR/experiment_dir_unpruned \
-n resnet18_detector \
--gpus $NUM_GPUS
A Sample annotation file:
rumex 0.0 0 0 1830 1195 1996 1348 0 0 0 0 0 0 0
• Hardware: T4
• Network Type: Detectnet_v2
• TAO Version: 5.0.0
• Training spec file
random_seed: 42
dataset_config {
data_sources {
tfrecords_path: "/workspace/tao-experiments/data/tfrecords/kitti_trainval/*"
image_directory_path: "/workspace/tao-experiments/data/training"
}
image_extension: "png"
target_class_mapping {
key: "rumex"
value: "rumex"
} validation_fold: 0
}
augmentation_config {
preprocessing {
output_image_width: 2048
output_image_height: 1376
min_bbox_width: 1.0
min_bbox_height: 1.0
output_image_channel: 3
}
spatial_augmentation {
hflip_probability: 0.5
zoom_min: 1.0
zoom_max: 1.0
translate_max_x: 8.0
translate_max_y: 8.0
}
color_augmentation {
hue_rotation_max: 25.0
saturation_shift_max: 0.20000000298
contrast_scale_max: 0.10000000149
contrast_center: 0.5
}
}
postprocessing_config {
target_class_config {
key: "rumex"
value {
clustering_config {
clustering_algorithm: DBSCAN
dbscan_confidence_threshold: 0.9
coverage_threshold: 0.00499999988824
dbscan_eps: 0.20000000298
dbscan_min_samples: 1
minimum_bounding_box_height: 20
}
}
}
}
model_config {
pretrained_model_file: "/workspace/tao-experiments/detectnet_v2/pretrained_resnet18/pretrained_detectnet_v2_vresnet18/resnet18.hdf5"
num_layers: 18
use_batch_norm: true
objective_set {
bbox {
scale: 35.0
offset: 0.5
}
cov {
}
}
arch: "resnet"
}
evaluation_config {
validation_period_during_training: 10
first_validation_epoch: 30
minimum_detection_ground_truth_overlap {
key: "rumex"
value: 0.5
}
evaluation_box_config {
key: "rumex"
value {
minimum_height: 20
maximum_height: 1000
minimum_width: 10
maximum_width: 1000
}
}
average_precision_mode: INTEGRATE
}
cost_function_config {
target_classes {
name: "rumex"
class_weight: 1.0
coverage_foreground_weight: 0.0500000007451
objectives {
name: "cov"
initial_weight: 1.0
weight_target: 1.0
}
objectives {
name: "bbox"
initial_weight: 10.0
weight_target: 10.0
}
}
enable_autoweighting: false
max_objective_weight: 0.999899983406
min_objective_weight: 9.99999974738e-05
}
training_config {
batch_size_per_gpu: 4
num_epochs: 1000
learning_rate {
soft_start_annealing_schedule {
min_learning_rate: 5e-07
max_learning_rate: 5e-05
soft_start: 0.10000000149
annealing: 0.699999988079
}
}
regularizer {
type: L1
weight: 3.00000002618e-09
}
optimizer {
adam {
epsilon: 9.99999993923e-09
beta1: 0.899999976158
beta2: 0.999000012875
}
}
cost_scaling {
initial_exponent: 20.0
increment: 0.005
decrement: 1.0
}
visualizer{
enabled: true
num_images: 3
scalar_logging_frequency: 10
infrequent_logging_frequency: 5
target_class_config {
key: "rumex"
value: {
coverage_threshold: 0.005
}
}
clearml_config{
project: "TAO DetectNet 1 Class"
task: "detectnet_v2_resnet18_clearml"
tags: "detectnet_v2"
tags: "training"
tags: "resnet18"
tags: "unpruned"
}
wandb_config{
project: "TAO Toolkit Wandb Demo"
name: "detectnet_v2_resnet18_wandb"
tags: "detectnet_v2"
tags: "training"
tags: "resnet18"
tags: "unpruned"
}
}
checkpoint_interval: 10
}
bbox_rasterizer_config {
target_class_config {
key: "rumex"
value {
cov_center_x: 0.5
cov_center_y: 0.5
cov_radius_x: 0.40000000596
cov_radius_y: 0.40000000596
bbox_min_radius: 1.0
}
}
deadzone_radius: 0.400000154972
}