tlt-train detectnet V2 mean average precision always 0 % in every target class

Hello, I want to use detectnet_v2 to train my custom dataset. I have generated tfrecords, and trained my own dataset. But the problem the mean average precision (mAP) always 0%, no matter how many times I trained my own dataset.

Here is my detectnet_v2_train_resnet18_kitti.txt

random_seed: 42
dataset_config {
  data_sources {
    tfrecords_path: "/workspace/tlt-experiments/tfrecords/kitti_trainval/*"
    image_directory_path: "/workspace/tlt-experiments/data/training"
  }
  image_extension: "jpg"
  target_class_mapping {
    key: "bola"
    value: "bola"
  }
  target_class_mapping {
    key: "bola_gelap"
    value: "bola_gelap"
  }
  validation_fold: 0
}
augmentation_config {
  preprocessing {
    output_image_width: 1024
    output_image_height: 576
    min_bbox_width: 1.0
    min_bbox_height: 1.0
    output_image_channel: 3 
  }
  spatial_augmentation {
    hflip_probability: 0.5
    zoom_min: 1.0
    zoom_max: 1.0
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    hue_rotation_max: 25.0
    saturation_shift_max: 0.20000000298
    contrast_scale_max: 0.10000000149
    contrast_center: 0.5
  }
}
postprocessing_config {
  target_class_config {
    key: "bola"
    value {
      clustering_config {
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.20000000298
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "bola_gelap"
    value {
      clustering_config {
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.20000000298
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
}
model_config {
  pretrained_model_file: "/workspace/tlt-experiments/pretrained_resnet18/tlt_resnet18_detectnet_v2_v1/resnet18.hdf5"
  num_layers: 18
  use_batch_norm: true
  objective_set {
    bbox {
      scale: 35.0
      offset: 0.5
    }
    cov {
    }
  }
  training_precision {
    backend_floatx: FLOAT32
  }
  arch: "resnet"
}
evaluation_config {
  validation_period_during_training: 5
  first_validation_epoch: 5
  minimum_detection_ground_truth_overlap {
    key: "bola"
    value: 0.699999988079
  }
  minimum_detection_ground_truth_overlap {
    key: "bola_gelap"
    value: 0.699999988079
  }
  evaluation_box_config {
    key: "bola"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "bola_gelap"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  average_precision_mode: INTEGRATE
}
cost_function_config {
  target_classes {
    name: "bola"
    class_weight: 1.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  target_classes {
    name: "bola_gelap"
    class_weight: 1.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  enable_autoweighting: true
  max_objective_weight: 0.999899983406
  min_objective_weight: 9.99999974738e-05
}
training_config {
  batch_size_per_gpu: 4
  num_epochs: 50
  learning_rate {
    soft_start_annealing_schedule {
      min_learning_rate: 5e-06
      max_learning_rate: 5e-04
      soft_start: 0.10000000149
      annealing: 0.699999988079
    }
  }
  regularizer {
    type: L1
    weight: 3.00000002618e-09
  }
  optimizer {
    adam {
      epsilon: 9.99999993923e-09
      beta1: 0.899999976158
      beta2: 0.999000012875
    }
  }
  cost_scaling {
    initial_exponent: 20.0
    increment: 0.005
    decrement: 1.0
  }
  checkpoint_interval: 10
}
bbox_rasterizer_config {
  target_class_config {
    key: "bola"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.40000000596
      cov_radius_y: 0.40000000596
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "bola_gelap"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.40000000596
      cov_radius_y: 0.40000000596
      bbox_min_radius: 1.0
    }
  }
  deadzone_radius: 0.67
}

Here is the result of my training

Validation cost: 0.000003
    Mean average_precision (in %): 0.0000

    class name      average precision (in %)
    ------------  --------------------------
    bola                                   0
    bola_gelap                             0

detectnet_v2_train_resnet18_kitti.txt (3.05 KB)

Hi m.billson16,
Could you please attach the full training log? You can click attach button against your comment and attach it.Thanks.

Hi m.billson16,
I think you already fix this issue, right?

Hi m.billson16,

We haven’t heard back from you in a couple weeks, so marking this topic is not an issue.
Please open a new forum issue when you are ready and we’ll pick it up there.

Hi I run into same problems and I open a new topic.
Hope can get your feedback