0 mean average precision for all the objects when training using detectnetV2 on custom dataset annotated in COCO format

Please provide the following information when requesting support.

• Hardware - Training on 3080
• Network Type Detectnet_v2
• Training spec file

random_seed: 7
model_config {
  pretrained_model_file: "tao-experiments/pretrained_resnet18/pretrained_detectnet_v2_vresnet18/resnet_18.hdf5"
  num_layers: 18
  use_batch_norm: true
  all_projections: True
  objective_set {
    bbox {
      scale: 35.0
      offset: 0.5
    }
    cov {
    }
  }
  arch: "resnet"
}

bbox_rasterizer_config {
  target_class_config {
    key: "menu"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.8
      cov_radius_y: 0.8
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "person"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.8
      cov_radius_y: 0.8
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "table"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.8
      cov_radius_y: 0.8
      bbox_min_radius: 1.0
    }
  }
  deadzone_radius: 0.67
}

postprocessing_config {
  target_class_config {
    key: "menu"
    value {
      clustering_config {
        clustering_algorithm: NMS
        minimum_bounding_box_height: 10
      }
    }
  }
  target_class_config {
    key: "person"
    value {
      clustering_config {
        clustering_algorithm: NMS
        minimum_bounding_box_height: 10
      }
    }
  }
  target_class_config {
    key: "table"
    value {
      clustering_config {
        clustering_algorithm: NMS
        minimum_bounding_box_height: 10
      }
    }
  }
}

cost_function_config {
  target_classes {
    name: "menu"
    class_weight: 1.0
    coverage_foreground_weight: 0.05
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  target_classes {
    name: "person"
    class_weight: 1.0
    coverage_foreground_weight: 0.05
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  target_classes {
    name: "table"
    class_weight: 1.0
    coverage_foreground_weight: 0.05
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  enable_autoweighting: True
  max_objective_weight: 0.9999
  min_objective_weight: 0.0001
}

training_config {
  batch_size_per_gpu: 4
    num_epochs: 120
    learning_rate {
    soft_start_annealing_schedule {
      min_learning_rate: 5e-6
      max_learning_rate: 5e-4
      soft_start: 0.10000000149
      annealing: 0.699999988079
    }
  }
  regularizer {
    type: L1
    weight: 3e-9
  }
  optimizer {
    adam {
      epsilon: 1e-08
      beta1: 0.9
      beta2: 0.999
    }
  }
  cost_scaling {
    enabled: False
    initial_exponent: 20.0
    increment: 0.005
    decrement: 1.0
  }
  visualizer {
    enabled: true
    num_images: 3
    scalar_logging_frequency: 10
    infrequent_logging_frequency: 1
    target_class_config {
      key: "menu"
      value: {
        coverage_threshold: 0.005
      }
    }
    target_class_config {
      key: "person"
      value: {
        coverage_threshold: 0.005
      }
    }
    target_class_config {
      key: "table"
      value: {
        coverage_threshold: 0.005
      }
    }
  }
  checkpoint_interval: 10
}

augmentation_config {
  preprocessing {
    output_image_width: 960
    output_image_height: 544
    min_bbox_width: 1.0
    min_bbox_height: 1.0
    output_image_channel: 3
  }
  spatial_augmentation {
    hflip_probability: 0.5
    zoom_min: 1.0
    zoom_max: 1.0
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    hue_rotation_max: 25.0
    saturation_shift_max: 0.20000000298
    contrast_scale_max: 0.10000000149
    contrast_center: 0.5
  }
}

evaluation_config {
  validation_period_during_training: 10
  first_validation_epoch: 10
  minimum_detection_ground_truth_overlap {
    key: "menu"
    value: 0.5
  }
  minimum_detection_ground_truth_overlap {
    key: "person"
    value: 0.5
  }
  minimum_detection_ground_truth_overlap {
    key: "table"
    value: 0.5
  }
  evaluation_box_config {
    key: "menu"
    value {
      minimum_height: 4
      maximum_height: 9999
      minimum_width: 4
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "person"
    value {
      minimum_height: 4
      maximum_height: 9999
      minimum_width: 4
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "table"
    value {
      minimum_height: 4
      maximum_height: 9999
      minimum_width: 4
      maximum_width: 9999
    }
  }
  average_precision_mode: INTEGRATE
}

dataset_config {
  data_sources {
    tfrecords_path: "/workspace/tao-experiments/data/tfrecords/coco_trainval/*256"
    image_directory_path: "/workspace/tao-experiments/data/coco"
  }
  image_extension: "png"
  target_class_mapping {
    key: "menu"
    value: "menu"
  }
  target_class_mapping {
    key: "person"
    value: "person"
  }
  target_class_mapping {
    key: "table"
    value: "table"
  }
  validation_data_source: {
    tfrecords_path: "/workspace/tao-experiments/data/tfrecords/coco_trainval/*32"
    image_directory_path: "/workspace/tao-experiments/data/coco"
  }
}

• How to reproduce the issue ? - No errors, training job succeeds but the precision is really bad

The specs of file I use to get TFrecords:

coco_config {
  root_directory_path: "/workspace/tao-experiments/data/coco/"
  img_dir_names: ["val", "train"]
  annotation_files: ["annotations/instances_val.json", "annotations/instances_train.json"]
  num_partitions: 2
  num_shards: [32, 256]
}
image_directory_path: "/workspace/tao-experiments/data/coco"

I have tried with DBSCAN clustering algorithm, used resnet34, darknet as backbone, tried freezing layers as well but still the numbers are always 0.

Are your training images the same resolution? If not, please set enable_auto_resize: true in the training config file.

Yes all images are 960 * 544.

Can you share an example of label file?

{'images': [{'id': 1, 'file_name': 'image_1.png', 'width': 960, 'height': 544}], 'annotations': [{'id': 1, \
'image_id': 1, 'category_id': 1, 'bbox': [277.5818176269531, 43.28742218017578, \
91.56036376953125, 77.64122772216797], 'area': 7108.859053754713, 'iscrowd': 0}, {'id': 2, \
'image_id': 1, 'category_id': 4, 'bbox': [508.2998046875, 330.1967468261719, 208.7877197265625, \
148.58041381835938], 'area': 31021.76579716429, 'iscrowd': 0}, {'id': 3, 'image_id': 1, 'category_id': \
3, 'bbox': [277.5818176269531, 33.28742218017578, 91.56036376953125, 87.64122772216797], \
'area': 8024.462691450026, 'iscrowd': 0}, {'id': 4, 'image_id': 1, 'category_id': 4, 'bbox': \
[388.3735046386719, 222.57691955566406, 141.39865112304688, 125.56895446777344], \
'area': 17755.280784674454, 'iscrowd': 0}, {'id': 5, 'image_id': 1, 'category_id': 4, 'bbox': \
[552.5770874023438, 101.79374694824219, 119.85699462890625, 67.67396545410156], 'area': \
8111.198113949038, 'iscrowd': 0}, {'id': 6, 'image_id': 1, 'category_id': 4, 'bbox': \
[772.185302734375, 228.51258850097656, 144.8861083984375, 133.2353057861328], 'area': \
19303.944956628606, 'iscrowd': 0}, {'id': 7, 'image_id': 1, 'category_id': 4, 'bbox': \
[773.3126220703125, 218.7852783203125, 141.8604736328125, 77.67727661132812], 'area': \
11019.335250589997, 'iscrowd': 0}, {'id': 8, 'image_id': 1, 'category_id': 4, 'bbox': \
[626.0317993164062, 169.75228881835938, 100.63037109375, 40.3277587890625], 'area': \
4058.1973323225975, 'iscrowd': 0}, {'id': 9, 'image_id': 1, 'category_id': 4, 'bbox': \
[101.9083023071289, 292.6826171875, 142.3033676147461, 80.18209838867188], 'area': \
11410.182623124914, 'iscrowd': 0}, {'id': 10, 'image_id': 1, 'category_id': 4, 'bbox': \
[392.6964111328125, 130.7268829345703, 125.06402587890625, 79.88526916503906], 'area': \
9990.773370199837, 'iscrowd': 0}, {'id': 11, 'image_id': 1, 'category_id': 4, 'bbox': \
[751.57861328125, 132.51092529296875, 75.32354736328125, 71.47303771972656], 'area': \
5383.602741879411, 'iscrowd': 0}, {'id': 12, 'image_id': 1, 'category_id': 4, 'bbox': \
[101.2449951171875, 281.990966796875, 146.65621948242188, 143.36270141601562], 'area': \
21025.0318044601, 'iscrowd': 0}, {'id': 13, 'image_id': 1, 'category_id': 4, 'bbox': \
[136.01014709472656, 474.55255126953125, 208.72425842285156, 68.16131591796875], \
'area': 14226.920118103735, 'iscrowd': 0}, {'id': 14, 'image_id': 1, 'category_id': 2, 'bbox': 
\
[0.2716605067253113, 145.5406036376953, 38.76214152574539, 62.01707458496094], 'area': \
2403.9146220749635, 'iscrowd': 0}, {'id': 15, 'image_id': 1, 'category_id': 4, 'bbox': \
[389.3913879394531, 213.2857666015625, 139.49581909179688, 77.1763916015625], 'area': \
10765.783961009234, 'iscrowd': 0}, {'id': 16, 'image_id': 1, 'category_id': 4, 'bbox': [625.990234375, \
159.3264617919922, 102.0302734375, 105.97669982910156], 'area': 10812.831661567092, \
'iscrowd': 0}], 'categories': [{'id': 1, 'name': 'menu'}, {'id': 2, 'name': 'plate'}, {'id': 3, 'name': 'check'}, \
{'id': 4, 'name': 'table'}]}

This is the label for one image, its a dictionary having images, annotations and categories.

Any update on this?
Thanks!

There is not person your dataset. Could you remove person in the spec file and retry? More, please share the log when you run tao detectnet_v2 dataset_convert.

For this particular frame, there may not have been a person detected, but the final json that I am using (annotated json for all my images) has all the 5 categories. I was trying to minimize the classes in the spec file to see the results, but even if i include all the 5 classes in the spec file that match the categories in the corresponding json, I still get 0 precision for all classes.

Could you please share the the log when you run tao detectnet_v2 dataset_convert and training? More, could you double check if follow the format mentioned in Data Annotation Format - NVIDIA Docs ?
For example,
“categories”: [{“supercategory”: “person”,“id”: 1,“name”: “person”},{“supercategory”: “vehicle”,“id”: 2,“name”: “bicycle”},{“supercategory”: “vehicle”,“id”: 3,“name”: “car”},{“supercategory”: “vehicle”,“id”: 4,“name”: “motorcycle”}]

The log of tao detectnet_v2 dataset_convert

Converting Tfrecords for COCO trainval dataset
2023-05-03 14:38:46,225 [INFO] root: Registry: ['nvcr.io']
2023-05-03 14:38:46,305 [INFO] tlt.components.instance_handler.local_instance: Running command in container: nvcr.io/nvidia/tao/tao-toolkit:4.0.0-tf1.15.5
2023-05-03 14:38:47,236 [WARNING] tlt.components.docker_handler.docker_handler: 
Docker will run the commands as root. If you would like to retain your
local host permissions, please add the "user":"UID:GID" in the
DockerOptions portion of the "/home/shounak/.tao_mounts.json" file. You can obtain your
users UID and GID by using the "id -u" and "id -g" commands on the
terminal.
Using TensorFlow backend.
2023-05-03 18:38:48.758429: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
/usr/local/lib/python3.6/dist-packages/requests/__init__.py:91: RequestsDependencyWarning: urllib3 (1.26.5) or chardet (3.0.4) doesn't match a supported version!
  RequestsDependencyWarning)
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
/usr/local/lib/python3.6/dist-packages/requests/__init__.py:91: RequestsDependencyWarning: urllib3 (1.26.5) or chardet (3.0.4) doesn't match a supported version!
  RequestsDependencyWarning)
U

sing TensorFlow backend.
2023-05-03 18:38:55,886 [INFO] iva.detectnet_v2.dataio.build_converter: Instantiating a coco converter
2023-05-03 18:38:55,886 [INFO] iva.detectnet_v2.dataio.dataset_converter_lib: Creating output directory /workspace/tao-experiments/data/tfrecords/coco_trainval
loading annotations into memory...
Done (t=0.17s)
creating index...
index created!
loading annotations into memory...
Done (t=0.50s)
creating index...
index created!
2023-05-03 18:38:56,629 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 0
2023-05-03 18:38:56,645 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 1
2023-05-03 18:38:56,660 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 2
2023-05-03 18:38:56,675 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 3
2023-05-03 18:38:56,691 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 4
2023-05-03 18:38:56,707 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 5
2023-05-03 18:38:56,723 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 6
2023-05-03 18:38:56,739 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 7
2023-05-03 18:38:56,754 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 8
2023-05-03 18:38:56,770 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 9
2023-05-03 18:38:56,787 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 10
2023-05-03 18:38:56,803 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 11
2023-05-03 18:38:56,820 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 12
2023-05-03 18:38:56,837 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 13
2023-05-03 18:38:56,853 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 14
2023-05-03 18:38:56,870 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 15
2023-05-03 18:38:56,887 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 16
2023-05-03 18:38:56,904 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 17
2023-05-03 18:38:56,920 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 18
2023-05-03 18:38:56,937 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 19
2023-05-03 18:38:56,956 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 20
2023-05-03 18:38:56,975 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 21
2023-05-03 18:38:56,995 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 22
2023-05-03 18:38:57,016 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 23
2023-05-03 18:38:57,036 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 24
2023-05-03 18:38:57,057 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 25
2023-05-03 18:38:57,080 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 26
2023-05-03 18:38:57,100 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 27
2023-05-03 18:38:57,119 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 28
2023-05-03 18:38:57,139 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 29
2023-05-03 18:38:57,158 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 30

2023-05-03 18:38:57,178 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 0, shard 31
2023-05-03 18:38:57,207 [INFO] iva.detectnet_v2.dataio.dataset_converter_lib: 
Wrote the following numbers of objects:
b'menu': 2826
b'table': 12550
b'check': 1896
b'plate': 4397
b'person': 18264

2023-05-03 18:38:57,207 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 0
2023-05-03 18:38:57,213 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 1
2023-05-03 18:38:57,219 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 2
2023-05-03 18:38:57,224 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 3
2023-05-03 18:38:57,230 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 4
2023-05-03 18:38:57,236 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 5
2023-05-03 18:38:57,242 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 6
2023-05-03 18:38:57,247 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 7
2023-05-03 18:38:57,253 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 8
2023-05-03 18:38:57,259 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 9
2023-05-03 18:38:57,265 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 10
2023-05-03 18:38:57,271 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 11
2023-05-03 18:38:57,276 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 12
2023-05-03 18:38:57,282 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 13
2023-05-03 18:38:57,288 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 14
2023-05-03 18:38:57,294 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 15
2023-05-03 18:38:57,300 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 16
2023-05-03 18:38:57,306 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 17
2023-05-03 18:38:57,312 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 18
2023-05-03 18:38:57,318 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 19
2023-05-03 18:38:57,325 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 20
2023-05-03 18:38:57,331 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 21
2023-05-03 18:38:57,337 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 22
2023-05-03 18:38:57,343 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 23
2023-05-03 18:38:57,349 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 24
2023-05-03 18:38:57,355 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 25

2023-05-03 18:38:57,361 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 26
2023-05-03 18:38:57,367 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 27
2023-05-03 18:38:57,373 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 28
2023-05-03 18:38:57,379 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 29
2023-05-03 18:38:57,386 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 30
2023-05-03 18:38:57,392 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 31
2023-05-03 18:38:57,399 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 32
2023-05-03 18:38:57,405 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 33

2023-05-03 18:38:57,411 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 34
2023-05-03 18:38:57,418 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 35
2023-05-03 18:38:57,424 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 36
2023-05-03 18:38:57,430 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 37
2023-05-03 18:38:57,437 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 38
2023-05-03 18:38:57,443 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 39
2023-05-03 18:38:57,450 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 40
2023-05-03 18:38:57,457 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 41
2023-05-03 18:38:57,463 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 42
2023-05-03 18:38:57,470 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 43
2023-05-03 18:38:57,477 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 44
2023-05-03 18:38:57,483 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 45
2023-05-03 18:38:57,490 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 46
2023-05-03 18:38:57,497 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 47
2023-05-03 18:38:57,503 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 48
2023-05-03 18:38:57,510 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 49
2023-05-03 18:38:57,517 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 50
2023-05-03 18:38:57,524 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 51
2023-05-03 18:38:57,531 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 52
2023-05-03 18:38:57,537 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 53
2023-05-03 18:38:57,544 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 54
2023-05-03 18:38:57,550 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 55

2023-05-03 18:38:57,556 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 56
2023-05-03 18:38:57,563 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 57
2023-05-03 18:38:57,569 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 58
2023-05-03 18:38:57,575 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 59
2023-05-03 18:38:57,581 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 60
2023-05-03 18:38:57,588 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 61
2023-05-03 18:38:57,594 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 62
2023-05-03 18:38:57,600 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 63
2023-05-03 18:38:57,606 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 64
2023-05-03 18:38:57,613 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 65
2023-05-03 18:38:57,619 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 66
2023-05-03 18:38:57,625 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 67
2023-05-03 18:38:57,631 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 68
2023-05-03 18:38:57,637 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 69
2023-05-03 18:38:57,644 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 70
2023-05-03 18:38:57,650 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 71
2023-05-03 18:38:57,656 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 72
2023-05-03 18:38:57,662 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 73
2023-05-03 18:38:57,668 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 74
2023-05-03 18:38:57,675 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 75
2023-05-03 18:38:57,681 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 76
2023-05-03 18:38:57,687 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 77
2023-05-03 18:38:57,693 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 78
2023-05-03 18:38:57,700 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 79
2023-05-03 18:38:57,706 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 80
2023-05-03 18:38:57,712 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 81
2023-05-03 18:38:57,718 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 82

2023-05-03 18:38:57,725 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 83
2023-05-03 18:38:57,731 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 84
2023-05-03 18:38:57,737 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 85
2023-05-03 18:38:57,743 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 86
2023-05-03 18:38:57,750 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 87
2023-05-03 18:38:57,756 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 88
2023-05-03 18:38:57,762 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 89
2023-05-03 18:38:57,768 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 90
2023-05-03 18:38:57,775 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 91
2023-05-03 18:38:57,781 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 92
2023-05-03 18:38:57,787 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 93
2023-05-03 18:38:57,794 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 94
2023-05-03 18:38:57,800 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 95
2023-05-03 18:38:57,806 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 96
2023-05-03 18:38:57,812 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 97
2023-05-03 18:38:57,818 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 98
2023-05-03 18:38:57,825 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 99
2023-05-03 18:38:57,831 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 100
2023-05-03 18:38:57,837 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 101
2023-05-03 18:38:57,843 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 102
2023-05-03 18:38:57,850 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 103
2023-05-03 18:38:57,856 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 104
2023-05-03 18:38:57,862 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 105

2023-05-03 18:38:57,869 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 106
2023-05-03 18:38:57,876 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 107
2023-05-03 18:38:57,882 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 108
2023-05-03 18:38:57,889 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 109
2023-05-03 18:38:57,896 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 110
2023-05-03 18:38:57,903 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 111
2023-05-03 18:38:57,909 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 112

2023-05-03 18:38:57,916 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 113
2023-05-03 18:38:57,923 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 114
2023-05-03 18:38:57,930 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 115
2023-05-03 18:38:57,937 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 116
2023-05-03 18:38:57,943 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 117
2023-05-03 18:38:57,950 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 118
2023-05-03 18:38:57,956 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 119
2023-05-03 18:38:57,962 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 120
2023-05-03 18:38:57,968 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 121
2023-05-03 18:38:57,975 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 122
2023-05-03 18:38:57,981 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 123
2023-05-03 18:38:57,988 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 124
2023-05-03 18:38:57,994 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 125
2023-05-03 18:38:58,000 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 126
2023-05-03 18:38:58,007 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 127
2023-05-03 18:38:58,013 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 128
2023-05-03 18:38:58,019 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 129
2023-05-03 18:38:58,026 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 130

2023-05-03 18:38:58,032 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 131
2023-05-03 18:38:58,039 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 132
2023-05-03 18:38:58,047 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 133
2023-05-03 18:38:58,054 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 134
2023-05-03 18:38:58,061 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 135
2023-05-03 18:38:58,069 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 136
2023-05-03 18:38:58,077 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 137
2023-05-03 18:38:58,084 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 138
2023-05-03 18:38:58,092 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 139
2023-05-03 18:38:58,099 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 140
2023-05-03 18:38:58,107 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 141
2023-05-03 18:38:58,115 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 142
2023-05-03 18:38:58,122 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 143
2023-05-03 18:38:58,130 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 144
2023-05-03 18:38:58,137 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 145
2023-05-03 18:38:58,145 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 146
2023-05-03 18:38:58,152 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 147
2023-05-03 18:38:58,160 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 148
2023-05-03 18:38:58,167 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 149
2023-05-03 18:38:58,178 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 150
2023-05-03 18:38:58,185 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 151
2023-05-03 18:38:58,193 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 152
2023-05-03 18:38:58,200 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 153
2023-05-03 18:38:58,208 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 154
2023-05-03 18:38:58,216 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 155
2023-05-03 18:38:58,223 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 156
2023-05-03 18:38:58,230 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 157
2023-05-03 18:38:58,237 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 158
2023-05-03 18:38:58,244 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 159
2023-05-03 18:38:58,251 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 160
2023-05-03 18:38:58,258 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 161
2023-05-03 18:38:58,264 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 162

2023-05-03 18:38:58,270 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 163
2023-05-03 18:38:58,277 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 164
2023-05-03 18:38:58,284 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 165
2023-05-03 18:38:58,291 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 166
2023-05-03 18:38:58,298 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 167
2023-05-03 18:38:58,305 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 168
2023-05-03 18:38:58,313 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 169
2023-05-03 18:38:58,320 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 170
2023-05-03 18:38:58,328 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 171
2023-05-03 18:38:58,335 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 172
2023-05-03 18:38:58,342 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 173
2023-05-03 18:38:58,349 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 174
2023-05-03 18:38:58,357 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 175
2023-05-03 18:38:58,364 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 176
2023-05-03 18:38:58,371 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 177
2023-05-03 18:38:58,379 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 178
2023-05-03 18:38:58,386 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 179
2023-05-03 18:38:58,393 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 180
2023-05-03 18:38:58,401 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 181
2023-05-03 18:38:58,408 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 182
2023-05-03 18:38:58,415 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 183
2023-05-03 18:38:58,423 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 184
2023-05-03 18:38:58,430 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 185
2023-05-03 18:38:58,437 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 186
2023-05-03 18:38:58,444 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 187
2023-05-03 18:38:58,451 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 188
2023-05-03 18:38:58,458 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 189

2023-05-03 18:38:58,466 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 190

2023-05-03 18:38:58,473 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 191
2023-05-03 18:38:58,480 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 192
2023-05-03 18:38:58,488 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 193
2023-05-03 18:38:58,495 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 194
2023-05-03 18:38:58,502 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 195
2023-05-03 18:38:58,510 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 196
2023-05-03 18:38:58,517 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 197
2023-05-03 18:38:58,525 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 198
2023-05-03 18:38:58,532 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 199
2023-05-03 18:38:58,540 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 200
2023-05-03 18:38:58,548 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 201
2023-05-03 18:38:58,556 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 202
2023-05-03 18:38:58,563 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 203
2023-05-03 18:38:58,571 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 204
2023-05-03 18:38:58,578 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 205
2023-05-03 18:38:58,585 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 206
2023-05-03 18:38:58,593 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 207
2023-05-03 18:38:58,600 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 208
2023-05-03 18:38:58,608 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 209
2023-05-03 18:38:58,615 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 210
2023-05-03 18:38:58,622 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 211
2023-05-03 18:38:58,630 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 212
2023-05-03 18:38:58,637 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 213
2023-05-03 18:38:58,644 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 214
2023-05-03 18:38:58,651 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 215
2023-05-03 18:38:58,659 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 216
2023-05-03 18:38:58,666 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 217
2023-05-03 18:38:58,672 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 218

2023-05-03 18:38:58,678 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 219
2023-05-03 18:38:58,684 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 220
2023-05-03 18:38:58,690 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 221
2023-05-03 18:38:58,697 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 222
2023-05-03 18:38:58,704 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 223
2023-05-03 18:38:58,711 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 224
2023-05-03 18:38:58,718 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 225
2023-05-03 18:38:58,725 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 226
2023-05-03 18:38:58,733 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 227
2023-05-03 18:38:58,740 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 228
2023-05-03 18:38:58,748 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 229
2023-05-03 18:38:58,756 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 230
2023-05-03 18:38:58,763 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 231
2023-05-03 18:38:58,771 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 232
2023-05-03 18:38:58,779 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 233
2023-05-03 18:38:58,787 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 234
2023-05-03 18:38:58,794 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 235
2023-05-03 18:38:58,802 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 236
2023-05-03 18:38:58,810 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 237
2023-05-03 18:38:58,818 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 238
2023-05-03 18:38:58,826 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 239
2023-05-03 18:38:58,834 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 240
2023-05-03 18:38:58,842 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 241
2023-05-03 18:38:58,849 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 242
2023-05-03 18:38:58,856 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 243
2023-05-03 18:38:58,863 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 244
2023-05-03 18:38:58,870 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 245
2023-05-03 18:38:58,877 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 246

2023-05-03 18:38:58,884 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 247
2023-05-03 18:38:58,891 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 248
2023-05-03 18:38:58,898 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 249
2023-05-03 18:38:58,905 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 250
2023-05-03 18:38:58,912 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 251
2023-05-03 18:38:58,919 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 252
2023-05-03 18:38:58,927 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 253
2023-05-03 18:38:58,934 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 254
2023-05-03 18:38:58,942 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Writing partition 1, shard 255
2023-05-03 18:38:58,992 [INFO] iva.detectnet_v2.dataio.dataset_converter_lib: 
Wrote the following numbers of objects:
b'menu': 7717
b'person': 45632
b'check': 6310
b'plate': 15951
b'table': 54083

2023-05-03 18:38:58,992 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Cumulative object statistics
2023-05-03 18:38:58,992 [INFO] iva.detectnet_v2.dataio.dataset_converter_lib: 
Wrote the following numbers of objects:
b'menu': 10543
b'table': 66633
b'check': 8206
b'plate': 20348
b'person': 63896

2023-05-03 18:38:58,992 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Class map. 

Label in GT: Label in tfrecords file 
menu: menu
table: table
check: check
plate: plate
person: person
For the dataset_config in the experiment_spec, please use labels in the tfrecords file, while writing the classmap.

2023-05-03 18:38:58,992 [INFO] iva.detectnet_v2.dataio.coco_converter_lib: Tfrecords generation complete.
Telemetry data couldn't be sent, but the command ran successfully.
[WARNING]: <urlopen error [Errno -2] Name or service not known>
Execution status: PASS
2023-05-03 14:39:00,240 [INFO] tlt.components.docker_handler.docker_handler: Stopping container

The training logs :

2023-05-03 14:46:41,781 [INFO] root: Registry: ['nvcr.io']
2023-05-03 14:46:41,862 [INFO] tlt.components.instance_handler.local_instance: Running command in container: nvcr.io/nvidia/tao/tao-toolkit:4.0.0-tf1.15.5
2023-05-03 14:46:42,353 [WARNING] tlt.components.docker_handler.docker_handler: 
Docker will run the commands as root. If you would like to retain your
local host permissions, please add the "user":"UID:GID" in the
DockerOptions portion of the "/home/shounak/.tao_mounts.json" file. You can obtain your
users UID and GID by using the "id -u" and "id -g" commands on the
terminal.
Using TensorFlow backend.
2023-05-03 18:46:43.101710: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
/usr/local/lib/python3.6/dist-packages/requests/__init__.py:91: RequestsDependencyWarning: urllib3 (1.26.5) or chardet (3.0.4) doesn't match a supported version!
  RequestsDependencyWarning)
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
/usr/local/lib/python3.6/dist-packages/requests/__init__.py:91: RequestsDependencyWarning: urllib3 (1.26.5) or chardet (3.0.4) doesn't match a supported version!
  RequestsDependencyWarning)
Using TensorFlow backend.
[1683139608.764434] [75ec5ecac3ab:230  :f]        vfs_fuse.c:281  UCX  ERROR inotify_add_watch(/tmp) failed: No space left on device
2023-05-03 18:46:49,910 [INFO] root: Starting DetectNet_v2 Training job
2023-05-03 18:46:49,911 [INFO] __main__: Loading experiment spec at /workspace/tao-experiments/detectnet_v2/specs/detectnet_v2_train_resnet18_coco.txt.
2023-05-03 18:46:49,913 [INFO] iva.detectnet_v2.spec_handler.spec_loader: Merging specification from /workspace/tao-experiments/detectnet_v2/specs/detectnet_v2_train_resnet18_coco.txt
2023-05-03 18:46:49,919 [INFO] root: Training gridbox model.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:153: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.

2023-05-03 18:46:49,919 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:153: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.

2023-05-03 18:46:51,724 [INFO] root: Sampling mode of the dataloader was set to user_defined.
2023-05-03 18:46:51,807 [INFO] root: Building DetectNet V2 model
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

2023-05-03 18:46:51,807 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.

2023-05-03 18:46:51,808 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.

2023-05-03 18:46:51,823 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/third_party/keras/tensorflow_backend.py:187: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.

2023-05-03 18:46:52,630 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/third_party/keras/tensorflow_backend.py:187: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.

2023-05-03 18:46:52,783 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.

2023-05-03 18:46:52,783 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.

2023-05-03 18:46:52,783 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.

2023-05-03 18:46:53,126 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.

2023-05-03 18:47:00,738 [INFO] iva.detectnet_v2.objectives.bbox_objective: Default L1 loss function will be used.
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            (None, 3, 544, 960)  0                                            
__________________________________________________________________________________________________
conv1 (Conv2D)                  (None, 64, 272, 480) 9472        input_1[0][0]                    
__________________________________________________________________________________________________
bn_conv1 (BatchNormalization)   (None, 64, 272, 480) 256         conv1[0][0]                      
__________________________________________________________________________________________________
activation_1 (Activation)       (None, 64, 272, 480) 0           bn_conv1[0][0]                   
__________________________________________________________________________________________________
block_1a_conv_1 (Conv2D)        (None, 64, 136, 240) 36928       activation_1[0][0]               
__________________________________________________________________________________________________
block_1a_bn_1 (BatchNormalizati (None, 64, 136, 240) 256         block_1a_conv_1[0][0]            
__________________________________________________________________________________________________
block_1a_relu_1 (Activation)    (None, 64, 136, 240) 0           block_1a_bn_1[0][0]              
__________________________________________________________________________________________________
block_1a_conv_2 (Conv2D)        (None, 64, 136, 240) 36928       block_1a_relu_1[0][0]            
__________________________________________________________________________________________________
block_1a_conv_shortcut (Conv2D) (None, 64, 136, 240) 4160        activation_1[0][0]               
__________________________________________________________________________________________________
block_1a_bn_2 (BatchNormalizati (None, 64, 136, 240) 256         block_1a_conv_2[0][0]            
__________________________________________________________________________________________________
block_1a_bn_shortcut (BatchNorm (None, 64, 136, 240) 256         block_1a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_1 (Add)                     (None, 64, 136, 240) 0           block_1a_bn_2[0][0]              
                                                                 block_1a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_1a_relu (Activation)      (None, 64, 136, 240) 0           add_1[0][0]                      
__________________________________________________________________________________________________
block_1b_conv_1 (Conv2D)        (None, 64, 136, 240) 36928       block_1a_relu[0][0]              
__________________________________________________________________________________________________
block_1b_bn_1 (BatchNormalizati (None, 64, 136, 240) 256         block_1b_conv_1[0][0]            
__________________________________________________________________________________________________
block_1b_relu_1 (Activation)    (None, 64, 136, 240) 0           block_1b_bn_1[0][0]              
__________________________________________________________________________________________________
block_1b_conv_2 (Conv2D)        (None, 64, 136, 240) 36928       block_1b_relu_1[0][0]            
__________________________________________________________________________________________________
block_1b_conv_shortcut (Conv2D) (None, 64, 136, 240) 4160        block_1a_relu[0][0]              
__________________________________________________________________________________________________
block_1b_bn_2 (BatchNormalizati (None, 64, 136, 240) 256         block_1b_conv_2[0][0]            
__________________________________________________________________________________________________
block_1b_bn_shortcut (BatchNorm (None, 64, 136, 240) 256         block_1b_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_2 (Add)                     (None, 64, 136, 240) 0           block_1b_bn_2[0][0]              
                                                                 block_1b_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_1b_relu (Activation)      (None, 64, 136, 240) 0           add_2[0][0]                      
__________________________________________________________________________________________________
block_2a_conv_1 (Conv2D)        (None, 128, 68, 120) 73856       block_1b_relu[0][0]              
__________________________________________________________________________________________________
block_2a_bn_1 (BatchNormalizati (None, 128, 68, 120) 512         block_2a_conv_1[0][0]            
__________________________________________________________________________________________________
block_2a_relu_1 (Activation)    (None, 128, 68, 120) 0           block_2a_bn_1[0][0]              
__________________________________________________________________________________________________
block_2a_conv_2 (Conv2D)        (None, 128, 68, 120) 147584      block_2a_relu_1[0][0]            
__________________________________________________________________________________________________
block_2a_conv_shortcut (Conv2D) (None, 128, 68, 120) 8320        block_1b_relu[0][0]              
__________________________________________________________________________________________________
block_2a_bn_2 (BatchNormalizati (None, 128, 68, 120) 512         block_2a_conv_2[0][0]            
__________________________________________________________________________________________________
block_2a_bn_shortcut (BatchNorm (None, 128, 68, 120) 512         block_2a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_3 (Add)                     (None, 128, 68, 120) 0           block_2a_bn_2[0][0]              
                                                                 block_2a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_2a_relu (Activation)      (None, 128, 68, 120) 0           add_3[0][0]                      
__________________________________________________________________________________________________
block_2b_conv_1 (Conv2D)        (None, 128, 68, 120) 147584      block_2a_relu[0][0]              
__________________________________________________________________________________________________
block_2b_bn_1 (BatchNormalizati (None, 128, 68, 120) 512         block_2b_conv_1[0][0]            
__________________________________________________________________________________________________
block_2b_relu_1 (Activation)    (None, 128, 68, 120) 0           block_2b_bn_1[0][0]              
__________________________________________________________________________________________________
block_2b_conv_2 (Conv2D)        (None, 128, 68, 120) 147584      block_2b_relu_1[0][0]            
__________________________________________________________________________________________________
block_2b_conv_shortcut (Conv2D) (None, 128, 68, 120) 16512       block_2a_relu[0][0]              
__________________________________________________________________________________________________
block_2b_bn_2 (BatchNormalizati (None, 128, 68, 120) 512         block_2b_conv_2[0][0]            
__________________________________________________________________________________________________
block_2b_bn_shortcut (BatchNorm (None, 128, 68, 120) 512         block_2b_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_4 (Add)                     (None, 128, 68, 120) 0           block_2b_bn_2[0][0]              
                                                                 block_2b_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_2b_relu (Activation)      (None, 128, 68, 120) 0           add_4[0][0]                      
__________________________________________________________________________________________________
block_3a_conv_1 (Conv2D)        (None, 256, 34, 60)  295168      block_2b_relu[0][0]              
__________________________________________________________________________________________________
block_3a_bn_1 (BatchNormalizati (None, 256, 34, 60)  1024        block_3a_conv_1[0][0]            
__________________________________________________________________________________________________
block_3a_relu_1 (Activation)    (None, 256, 34, 60)  0           block_3a_bn_1[0][0]              
__________________________________________________________________________________________________
block_3a_conv_2 (Conv2D)        (None, 256, 34, 60)  590080      block_3a_relu_1[0][0]            
__________________________________________________________________________________________________
block_3a_conv_shortcut (Conv2D) (None, 256, 34, 60)  33024       block_2b_relu[0][0]              
__________________________________________________________________________________________________
block_3a_bn_2 (BatchNormalizati (None, 256, 34, 60)  1024        block_3a_conv_2[0][0]            
__________________________________________________________________________________________________
block_3a_bn_shortcut (BatchNorm (None, 256, 34, 60)  1024        block_3a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_5 (Add)                     (None, 256, 34, 60)  0           block_3a_bn_2[0][0]              
                                                                 block_3a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_3a_relu (Activation)      (None, 256, 34, 60)  0           add_5[0][0]                      
__________________________________________________________________________________________________
block_3b_conv_1 (Conv2D)        (None, 256, 34, 60)  590080      block_3a_relu[0][0]              
__________________________________________________________________________________________________
block_3b_bn_1 (BatchNormalizati (None, 256, 34, 60)  1024        block_3b_conv_1[0][0]            
__________________________________________________________________________________________________
block_3b_relu_1 (Activation)    (None, 256, 34, 60)  0           block_3b_bn_1[0][0]              
__________________________________________________________________________________________________
block_3b_conv_2 (Conv2D)        (None, 256, 34, 60)  590080      block_3b_relu_1[0][0]            
__________________________________________________________________________________________________
block_3b_conv_shortcut (Conv2D) (None, 256, 34, 60)  65792       block_3a_relu[0][0]              
__________________________________________________________________________________________________
block_3b_bn_2 (BatchNormalizati (None, 256, 34, 60)  1024        block_3b_conv_2[0][0]            
__________________________________________________________________________________________________
block_3b_bn_shortcut (BatchNorm (None, 256, 34, 60)  1024        block_3b_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_6 (Add)                     (None, 256, 34, 60)  0           block_3b_bn_2[0][0]              
                                                                 block_3b_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_3b_relu (Activation)      (None, 256, 34, 60)  0           add_6[0][0]                      
__________________________________________________________________________________________________
block_4a_conv_1 (Conv2D)        (None, 512, 34, 60)  1180160     block_3b_relu[0][0]              
__________________________________________________________________________________________________
block_4a_bn_1 (BatchNormalizati (None, 512, 34, 60)  2048        block_4a_conv_1[0][0]            
__________________________________________________________________________________________________
block_4a_relu_1 (Activation)    (None, 512, 34, 60)  0           block_4a_bn_1[0][0]              
__________________________________________________________________________________________________
block_4a_conv_2 (Conv2D)        (None, 512, 34, 60)  2359808     block_4a_relu_1[0][0]            
__________________________________________________________________________________________________
block_4a_conv_shortcut (Conv2D) (None, 512, 34, 60)  131584      block_3b_relu[0][0]              
__________________________________________________________________________________________________
block_4a_bn_2 (BatchNormalizati (None, 512, 34, 60)  2048        block_4a_conv_2[0][0]            
__________________________________________________________________________________________________
block_4a_bn_shortcut (BatchNorm (None, 512, 34, 60)  2048        block_4a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_7 (Add)                     (None, 512, 34, 60)  0           block_4a_bn_2[0][0]              
                                                                 block_4a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_4a_relu (Activation)      (None, 512, 34, 60)  0           add_7[0][0]                      
__________________________________________________________________________________________________
block_4b_conv_1 (Conv2D)        (None, 512, 34, 60)  2359808     block_4a_relu[0][0]              
__________________________________________________________________________________________________
block_4b_bn_1 (BatchNormalizati (None, 512, 34, 60)  2048        block_4b_conv_1[0][0]            
__________________________________________________________________________________________________
block_4b_relu_1 (Activation)    (None, 512, 34, 60)  0           block_4b_bn_1[0][0]              
__________________________________________________________________________________________________
block_4b_conv_2 (Conv2D)        (None, 512, 34, 60)  2359808     block_4b_relu_1[0][0]            
__________________________________________________________________________________________________
block_4b_conv_shortcut (Conv2D) (None, 512, 34, 60)  262656      block_4a_relu[0][0]              
__________________________________________________________________________________________________
block_4b_bn_2 (BatchNormalizati (None, 512, 34, 60)  2048        block_4b_conv_2[0][0]            
__________________________________________________________________________________________________
block_4b_bn_shortcut (BatchNorm (None, 512, 34, 60)  2048        block_4b_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_8 (Add)                     (None, 512, 34, 60)  0           block_4b_bn_2[0][0]              
                                                                 block_4b_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_4b_relu (Activation)      (None, 512, 34, 60)  0           add_8[0][0]                      
__________________________________________________________________________________________________
output_bbox (Conv2D)            (None, 20, 34, 60)   10260       block_4b_relu[0][0]              
__________________________________________________________________________________________________
output_cov (Conv2D)             (None, 5, 34, 60)    2565        block_4b_relu[0][0]              
==================================================================================================
Total params: 11,561,113
Trainable params: 11,383,961
Non-trainable params: 177,152
__________________________________________________________________________________________________
2023-05-03 18:47:00,760 [INFO] root: DetectNet V2 model built.
2023-05-03 18:47:00,761 [INFO] root: Building rasterizer.
2023-05-03 18:47:00,761 [INFO] root: Rasterizers built.
2023-05-03 18:47:00,773 [INFO] root: Building training graph.
2023-05-03 18:47:00,774 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Serial augmentation enabled = False
2023-05-03 18:47:00,774 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Pseudo sharding enabled = False
2023-05-03 18:47:00,774 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Max Image Dimensions (all sources): (0, 0)
2023-05-03 18:47:00,774 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: number of cpus: 48, io threads: 96, compute threads: 48, buffered batches: 4
2023-05-03 18:47:00,774 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: total dataset size 5764, number of sources: 1, batch size per gpu: 2, steps: 2882

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/autograph/converters/directives.py:119: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.

2023-05-03 18:47:00,806 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/autograph/converters/directives.py:119: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.

WARNING:tensorflow:Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff5276b5278>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff5276b5278>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-05-03 18:47:00,838 [WARNING] tensorflow: Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff5276b5278>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff5276b5278>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-05-03 18:47:00,852 [INFO] iva.detectnet_v2.dataloader.default_dataloader: Bounding box coordinates were detected in the input specification! Bboxes will be automatically converted to polygon coordinates.
2023-05-03 18:47:01,017 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: shuffle: True - shard 0 of 1
2023-05-03 18:47:01,022 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: sampling 1 datasets with weights:
2023-05-03 18:47:01,022 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: source: 0 weight: 1.000000
WARNING:tensorflow:Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7ff44c7ddfd0>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7ff44c7ddfd0>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-05-03 18:47:01,032 [WARNING] tensorflow: Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7ff44c7ddfd0>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7ff44c7ddfd0>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-05-03 18:47:01,277 [INFO] __main__: Found 5764 samples in training set
2023-05-03 18:47:01,281 [INFO] root: Rasterizing tensors.
2023-05-03 18:47:01,476 [INFO] root: Tensors rasterized.
2023-05-03 18:47:03,772 [INFO] root: Training graph built.
2023-05-03 18:47:03,772 [INFO] root: Building validation graph.
2023-05-03 18:47:03,773 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Serial augmentation enabled = False
2023-05-03 18:47:03,773 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Pseudo sharding enabled = False
2023-05-03 18:47:03,773 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Max Image Dimensions (all sources): (0, 0)
2023-05-03 18:47:03,773 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: number of cpus: 48, io threads: 96, compute threads: 48, buffered batches: 4
2023-05-03 18:47:03,773 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: total dataset size 1982, number of sources: 1, batch size per gpu: 2, steps: 991
WARNING:tensorflow:Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff527698940>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff527698940>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-05-03 18:47:03,781 [WARNING] tensorflow: Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff527698940>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff527698940>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-05-03 18:47:03,794 [INFO] iva.detectnet_v2.dataloader.default_dataloader: Bounding box coordinates were detected in the input specification! Bboxes will be automatically converted to polygon coordinates.
2023-05-03 18:47:03,946 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: shuffle: False - shard 0 of 1
2023-05-03 18:47:03,949 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: sampling 1 datasets with weights:
2023-05-03 18:47:03,949 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: source: 0 weight: 1.000000
WARNING:tensorflow:Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7ff3cc611fd0>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7ff3cc611fd0>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-05-03 18:47:03,960 [WARNING] tensorflow: Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7ff3cc611fd0>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7ff3cc611fd0>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code

2023-05-03 18:47:04,112 [INFO] __main__: Found 1982 samples in validation set
2023-05-03 18:47:04,112 [INFO] root: Rasterizing tensors.
2023-05-03 18:47:04,269 [INFO] root: Tensors rasterized.
2023-05-03 18:47:04,550 [INFO] root: Validation graph built.
2023-05-03 18:47:06,102 [INFO] root: Running training loop.
2023-05-03 18:47:06,102 [INFO] __main__: Checkpoint interval: 10
2023-05-03 18:47:06,103 [INFO] __main__: Scalars logged at every 288 steps
2023-05-03 18:47:06,103 [INFO] __main__: Images logged at every 2882 steps
INFO:tensorflow:Create CheckpointSaverHook.
2023-05-03 18:47:06,105 [INFO] tensorflow: Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
2023-05-03 18:47:08,009 [INFO] tensorflow: Graph was finalized.
INFO:tensorflow:Running local_init_op.
2023-05-03 18:47:10,066 [INFO] tensorflow: Running local_init_op.
INFO:tensorflow:Done running local_init_op.
2023-05-03 18:47:10,653 [INFO] tensorflow: Done running local_init_op.
INFO:tensorflow:Saving checkpoints for step-0.
2023-05-03 18:47:17,599 [INFO] tensorflow: Saving checkpoints for step-0.
INFO:tensorflow:epoch = 0.0, learning_rate = 4.9999994e-06, loss = 0.098450065, step = 0
2023-05-03 18:48:03,569 [INFO] tensorflow: epoch = 0.0, learning_rate = 4.9999994e-06, loss = 0.098450065, step = 0
2023-05-03 18:48:03,576 [INFO] root: None
2023-05-03 18:48:03,594 [INFO] iva.detectnet_v2.tfhooks.task_progress_monitor_hook: Epoch 0/120: loss: 0.09845 learning rate: 0.00000 Time taken: 0:00:00 ETA: 0:00:00
2023-05-03 18:48:03,594 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 0.071
2023-05-03 18:48:06,263 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 1.623
2023-05-03 18:48:07,220 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 52.261
2023-05-03 18:48:08,186 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 51.776
INFO:tensorflow:epoch = 0.029493407356002775, learning_rate = 5.0569115e-06, loss = 0.06569926, step = 85 (5.038 sec)
2023-05-03 18:48:08,608 [INFO] tensorflow: epoch = 0.029493407356002775, learning_rate = 5.0569115e-06, loss = 0.06569926, step = 85 (5.038 sec)
2023-05-03 18:48:09,150 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 51.913
2023-05-03 18:48:10,111 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 52.055
2023-05-03 18:48:11,071 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 52.052
2023-05-03 18:48:12,027 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 52.321
2023-05-03 18:48:12,978 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 52.576
INFO:tensorflow:epoch = 0.07529493407356003, learning_rate = 5.1465836e-06, loss = 0.03726593, step = 217 (5.064 sec)
2023-05-03 18:48:13,671 [INFO] tensorflow: epoch = 0.07529493407356003, learning_rate = 5.1465836e-06, loss = 0.03726593, step = 217 (5.064 sec)
2023-05-03 18:48:13,939 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 52.071
2023-05-03 18:48:14,895 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 52.320
2023-05-03 18:48:15,855 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 52.092
INFO:tensorflow:global_step/sec: 19.788
2023-05-03 18:48:18,125 [INFO] tensorflow: global_step/sec: 19.788
2023-05-03 18:48:18,553 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 18.532
INFO:tensorflow:epoch = 0.10548230395558639, learning_rate = 5.2065548e-06, loss = 0.022609862, step = 304 (5.076 sec)
2023-05-03 18:48:18,747 [INFO] tensorflow: epoch = 0.10548230395558639, learning_rate = 5.2065548e-06, loss = 0.022609862, step = 304 (5.076 sec)
2023-05-03 18:48:19,519 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 51.770
2023-05-03 18:48:20,480 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 52.070
2023-05-03 18:48:21,435 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 52.338
2023-05-03 18:48:22,398 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 51.962
2023-05-03 18:48:23,360 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 52.013
INFO:tensorflow:epoch = 0.15128383067314363, learning_rate = 5.2988803e-06, loss = 0.014012933, step = 436 (5.071 sec)
2023-05-03 18:48:23,818 [INFO] tensorflow: epoch = 0.15128383067314363, learning_rate = 5.2988803e-06, loss = 0.014012933, step = 436 (5.071 sec)
2023-05-03 18:48:24,323 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 51.922
2023-05-03 18:48:25,289 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 51.750
2023-05-03 18:48:26,251 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 52.009
2023-05-03 18:48:27,207 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 52.325
2023-05-03 18:48:28,167 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 52.106
INFO:tensorflow:epoch = 0.1967383761276891, learning_rate = 5.3921226e-06, loss = 0.00902343, step = 567 (5.042 sec)
2023-05-03 18:48:28,861 [INFO] tensorflow: epoch = 0.1967383761276891, learning_rate = 5.3921226e-06, loss = 0.00902343, step = 567 (5.042 sec)
2023-05-03 18:48:29,131 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 51.869
INFO:tensorflow:global_step/sec: 25.9738
2023-05-03 18:48:29,213 [INFO] tensorflow: global_step/sec: 25.9738
2023-05-03 18:48:30,096 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 51.844
2023-05-03 18:48:31,065 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 51.619
2023-05-03 18:48:32,028 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 51.934
2023-05-03 18:48:32,988 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 52.087
INFO:tensorflow:epoch = 0.24219292158223454, learning_rate = 5.4870065e-06, loss = 0.007546805, step = 698 (5.047 sec)

I have also added super categories in the json.

Could you please upload the full training log? Please use button
image
to upload. Thanks.

This is the training log, running it for 12 epochs, the model has started to learn something but not much. Especially because of the results it has on person class. I can also see that the mAP is more or less inversely proportional to the number of labels.

tao-logs.txt (293.8 KB)

There is no update from you for a period, assuming this is not an issue anymore. Hence we are closing this topic. If need further support, please open a new one. Thanks

So, when you run 12 epochs, the result is

Epoch 12/12
=========================

Validation cost: 0.001081
Mean average_precision (in %): 6.0209

class name      average precision (in %)
------------  --------------------------
check                         17.5964
menu                           6.87127
person                         0.136122
plate                          5.48718
table                          0.0137174

How about the resolution of the 5 kinds of objects, are they small? Could you share an example of training image?

Please take a look at FAQ (Frequently Asked Questions - NVIDIA Docs).

In DetectNet_V2, are there any parameters that can help improve AP (average precision) on training small objects?

Following parameters can help you improve AP on smaller objects:

  • Increase num_layers of resnet
  • class_weight for small objects
  • Increase the coverage_radius_x and coverage_radius_y parameters of the bbox_rasterizer_config section for the small objects class
  • Decrease minimum_detection_ground_truth_overlap
  • Lower minimum_height to cover more small objects for evaluation.

Distribute the dataset class: How do I balance the weight between classes if the dataset has significantly higher samples for one class versus another?

To account for imbalance, increase the class_weight for classes with fewer samples. You can also try disabling enable_autoweighting; in this case initial_weight is used to control cov/regression weighting. It is important to keep the number of samples of different classes balanced, which helps improve mAP.

More, you can use deeper backbone. And also you can use yolov4_tiny network instead.

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.