Detectnet_v2 acuity is low

Please provide the following information when requesting support.

• Hardware (T4/V100/Xavier/Nano/etc)
• Network Type (Detectnet_v2/Faster_rcnn/Yolo_v4/LPRnet/Mask_rcnn/Classification/etc)
Detectnet_v2
• TLT Version (Please run “tlt info --verbose” and share “docker_tag” here)

dockers: 		
	nvidia/tao/tao-toolkit: 			
		4.0.0-tf2.9.1: 				
			docker_registry: nvcr.io
			tasks: 
				1. classification_tf2
				2. efficientdet_tf2
		4.0.0-tf1.15.5: 				
			docker_registry: nvcr.io
			tasks: 
				1. augment
				2. bpnet
				3. classification_tf1
				4. detectnet_v2
				5. dssd
				6. emotionnet
				7. efficientdet_tf1
				8. faster_rcnn
				9. fpenet
				10. gazenet
				11. gesturenet
				12. heartratenet
				13. lprnet
				14. mask_rcnn
				15. multitask_classification
				16. retinanet
				17. ssd
				18. unet
				19. yolo_v3
				20. yolo_v4
				21. yolo_v4_tiny
				22. converter
		4.0.1-tf1.15.5: 				
			docker_registry: nvcr.io
			tasks: 
				1. mask_rcnn
				2. unet
		4.0.0-pyt: 				
			docker_registry: nvcr.io
			tasks: 
				1. action_recognition
				2. deformable_detr
				3. segformer
				4. re_identification
				5. pointpillars
				6. pose_classification
				7. n_gram
				8. speech_to_text
				9. speech_to_text_citrinet
				10. speech_to_text_conformer
				11. spectro_gen
				12. vocoder
				13. text_classification
				14. question_answering
				15. token_classification
				16. intent_slot_classification
				17. punctuation_and_capitalization
format_version: 2.0
toolkit_version: 4.0.1
published_date: 03/06/2023

• Training spec file(If have, please share here)
• How to reproduce the issue ? (This is for errors. Please share the command line and the detailed log here.)

Learning from my personal data in detectnet_v2.
The class consists of only people, and the image size is 1280x720.

However, the learning result AP is only about 40%.

Below is my spec file. What is the problem?

random_seed: 42
dataset_config {
  data_sources {
    tfrecords_path: "/home/soo/tao-experiments/data/peoplenet/tfrecords_train/kitti_trainval/*"
    image_directory_path: "/home/soo/tao-experiments/data/peoplenet/train/"
  }
  image_extension: "jpg"
  target_class_mapping {
    key: "person"
    value: "person"
  }
  validation_fold: 0
  validation_data_source:{
    tfrecords_path: "/home/soo/tao-experiments/data/peoplenet/tfrecords_valid/kitti_trainval/*"
    image_directory_path: "/home/soo/tao-experiments/data/peoplenet/valid/"
  }
}
augmentation_config {
  preprocessing {
    output_image_width: 1280
    output_image_height: 720
    min_bbox_width: 1.0
    min_bbox_height: 1.0
    output_image_channel: 3
  }
  spatial_augmentation {
    hflip_probability: 0.5
    zoom_min: 1.0
    zoom_max: 1.0
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    hue_rotation_max: 25.0
    saturation_shift_max: 0.20000000298
    contrast_scale_max: 0.10000000149
    contrast_center: 0.5
  }
}
postprocessing_config {
  target_class_config {
    key: "person"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00749999983236
        dbscan_eps: 0.230000004172
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
}
model_config {
  pretrained_model_file: "/home/soo/tao-experiments/detectnet_v2/pretrained_resnet18/pretrained_detectnet_v2_vresnet18/resnet18.hdf5"
  num_layers: 18
  use_batch_norm: true
  objective_set {
    bbox {
      scale: 35.0
      offset: 0.5
    }
    cov {
    }
  }
  arch: "resnet"
}
evaluation_config {
  validation_period_during_training: 10
  first_validation_epoch: 30
  minimum_detection_ground_truth_overlap {
    key: "person"
    value: 0.5
  }
  evaluation_box_config {
    key: "person"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  average_precision_mode: INTEGRATE
}
cost_function_config {
  target_classes {
    name: "person"
    class_weight: 4.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  enable_autoweighting: true
  max_objective_weight: 0.999899983406
  min_objective_weight: 9.99999974738e-05
}
training_config {
  batch_size_per_gpu: 32
  num_epochs: 120
  learning_rate {
    soft_start_annealing_schedule {
      min_learning_rate: 5e-06
      max_learning_rate: 5e-04
      soft_start: 0.10000000149
      annealing: 0.699999988079
    }
  }
  regularizer {
    type: L1
    weight: 3.00000002618e-09
  }
  optimizer {
    adam {
      epsilon: 9.99999993923e-09
      beta1: 0.899999976158
      beta2: 0.999000012875
    }
  }
  cost_scaling {
    initial_exponent: 20.0
    increment: 0.005
    decrement: 1.0
  }
  visualizer{
    enabled: true
    num_images: 3
    scalar_logging_frequency: 50
    infrequent_logging_frequency: 5
    target_class_config {
      key: "person"
      value: {
        coverage_threshold: 0.005
      }
    }
    clearml_config{
      project: "TAO Toolkit ClearML Demo"
      task: "detectnet_v2_resnet18_clearml"
      tags: "detectnet_v2"
      tags: "training"
      tags: "resnet18"
      tags: "unpruned"
    }
    wandb_config{
      project: "TAO Toolkit Wandb Demo"
      name: "detectnet_v2_resnet18_wandb"
      tags: "detectnet_v2"
      tags: "training"
      tags: "resnet18"
      tags: "unpruned"
    }
  }
  checkpoint_interval: 10
}
bbox_rasterizer_config {

  target_class_config {
    key: "person"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 1.0
      cov_radius_y: 1.0
      bbox_min_radius: 1.0
    }
  }
  deadzone_radius: 0.400000154972
}

You can run evaluation against training dataset to narrow down.
Please refer to DetectNet_v2 - NVIDIA Docs.

And, please set either validation_fold or validation_data_source. It is not needed to set both.

Please check the person size. Is it usually a small object? How about the average resolution?

The size of the object is not as small as labeled below.

person 0.00 0 -10.00 841 593 1041 719 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 409 318 505 399 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 817 166 914 223 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 518 164 565 233 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 0 301 17 384 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 841 593 1041 719 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 409 318 505 399 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 817 166 914 223 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 518 164 565 233 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 0 301 17 384 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00

In addition, the resolution of the image is usually 1280x720, and some data deviates from this resolution.

If the training images are not all the 1280x720, please set below parameter in the training spec file.
enable_auto_resize: true

Where should I add the parameter for enable_auto_resize?

Set it into augmentation_config. Please refer to DetectNet_v2 - NVIDIA Docs

Thank you. I will share the results after learning.

As a result of the learning, the performance did not improve as follows.

Validation cost: 0.002165
Mean average_precision (in %): 38.8387

class name      average precision (in %)
------------  --------------------------
person                           38.8387

Can you share latest training spec file?
If possible, could you share the image when the label is below you posted previously?

person 0.00 0 -10.00 841 593 1041 719 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 409 318 505 399 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 817 166 914 223 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 518 164 565 233 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 0 301 17 384 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 841 593 1041 719 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 409 318 505 399 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 817 166 914 223 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 518 164 565 233 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00
person 0.00 0 -10.00 0 301 17 384 -1.00 -1.00 -1.00 -1000.00 -1000.00 -1000.00 -10.00

BTW, why there are the same labels in above?

random_seed: 42
dataset_config {
  data_sources {
    tfrecords_path: "/home/soo/tao-experiments/data/peoplenet/tfrecords_train/kitti_trainval/*"
    image_directory_path: "/home/soo/tao-experiments/data/peoplenet/train/"
  }
  image_extension: "jpg"
  target_class_mapping {
    key: "person"
    value: "person"
  }
  validation_data_source:{
    tfrecords_path: "/home/soo/tao-experiments/data/peoplenet/tfrecords_valid/kitti_trainval/*"
    image_directory_path: "/home/soo/tao-experiments/data/peoplenet/valid/"
  }
}
augmentation_config {
  preprocessing {
    output_image_width: 1280
    output_image_height: 720
    min_bbox_width: 1.0
    min_bbox_height: 1.0
    output_image_channel: 3
    enable_auto_resize: true
  }
  spatial_augmentation {
    hflip_probability: 0.5
    zoom_min: 1.0
    zoom_max: 1.0
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    hue_rotation_max: 25.0
    saturation_shift_max: 0.20000000298
    contrast_scale_max: 0.10000000149
    contrast_center: 0.5
  }
}
postprocessing_config {
  target_class_config {
    key: "person"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00749999983236
        dbscan_eps: 0.230000004172
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
}
model_config {
  pretrained_model_file: "/home/soo/tao-experiments/detectnet_v2/pretrained_resnet18/pretrained_detectnet_v2_vresnet18/resnet18.hdf5"
  num_layers: 18
  use_batch_norm: true
  objective_set {
    bbox {
      scale: 35.0
      offset: 0.5
    }
    cov {
    }
  }
  arch: "resnet"
}
evaluation_config {
  validation_period_during_training: 10
  first_validation_epoch: 30
  minimum_detection_ground_truth_overlap {
    key: "person"
    value: 0.2
  }
  evaluation_box_config {
    key: "person"
    value {
      minimum_height: 10
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  average_precision_mode: INTEGRATE
}
cost_function_config {
  target_classes {
    name: "person"
    class_weight: 10.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  enable_autoweighting: true
  max_objective_weight: 0.999899983406
  min_objective_weight: 9.99999974738e-05
}
training_config {
  batch_size_per_gpu: 32
  num_epochs: 120
  learning_rate {
    soft_start_annealing_schedule {
      min_learning_rate: 5e-06
      max_learning_rate: 5e-04
      soft_start: 0.10000000149
      annealing: 0.699999988079
    }
  }
  regularizer {
    type: L1
    weight: 3.00000002618e-09
  }
  optimizer {
    adam {
      epsilon: 9.99999993923e-09
      beta1: 0.899999976158
      beta2: 0.999000012875
    }
  }
  cost_scaling {
    initial_exponent: 20.0
    increment: 0.005
    decrement: 1.0
  }
  visualizer{
    enabled: true
    num_images: 3
    scalar_logging_frequency: 50
    infrequent_logging_frequency: 5
    target_class_config {
      key: "person"
      value: {
        coverage_threshold: 0.005
      }
    }
    clearml_config{
      project: "TAO Toolkit ClearML Demo"
      task: "detectnet_v2_resnet18_clearml"
      tags: "detectnet_v2"
      tags: "training"
      tags: "resnet18"
      tags: "unpruned"
    }
    wandb_config{
      project: "TAO Toolkit Wandb Demo"
      name: "detectnet_v2_resnet18_wandb"
      tags: "detectnet_v2"
      tags: "training"
      tags: "resnet18"
      tags: "unpruned"
    }
  }
  checkpoint_interval: 10
}
bbox_rasterizer_config {

  target_class_config {
    key: "person"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 1.0
      cov_radius_y: 1.0
      bbox_min_radius: 1.0
    }
  }
  deadzone_radius: 0.400000154972
}

This is my spec file and I made some modifications compared to the spec file above.

And the reason why there is the same label is that the labeled file is not complete.

Among other data, there may be the same label, and even incorrect labels that deviate from image resolution.

But in my data, this is a minority.

Could this be a problem?

Suggest to double check if the bboxes are correct… And also, above 1st line is the same as the 6th line.

To narrow down, can you also run evaluation against the training dataset? You can change validation_data_source part and then run tao detectnet_v2 evaluate xxx

Thank you for your reply.

The label file is labeled incorrectly, so I think that one object contains two labels.

In addition, when the train data set is applied to the validation, the following AP appears.

Validation cost: 0.002165
Mean average_precision (in %): 38.8363

class name      average precision (in %)
------------  --------------------------
person                           38.8363

Can you share the full training log?

{"date": "7/17/2023", "time": "4:32:3", "status": "RUNNING", "verbosity": "INFO", "message": "Training gridbox model."}
{"date": "7/17/2023", "time": "4:32:3", "status": "RUNNING", "verbosity": "INFO", "message": "Building DetectNet V2 model"}
{"date": "7/17/2023", "time": "4:32:10", "status": "RUNNING", "verbosity": "INFO", "message": "DetectNet V2 model built."}
{"date": "7/17/2023", "time": "4:32:10", "status": "RUNNING", "verbosity": "INFO", "message": "Building rasterizer."}
{"date": "7/17/2023", "time": "4:32:10", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizers built."}
{"date": "7/17/2023", "time": "4:32:10", "status": "RUNNING", "verbosity": "INFO", "message": "Building training graph."}
{"date": "7/17/2023", "time": "4:32:11", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizing tensors."}
{"date": "7/17/2023", "time": "4:32:11", "status": "RUNNING", "verbosity": "INFO", "message": "Tensors rasterized."}
{"date": "7/17/2023", "time": "4:32:13", "status": "RUNNING", "verbosity": "INFO", "message": "Training graph built."}
{"date": "7/17/2023", "time": "4:32:13", "status": "RUNNING", "verbosity": "INFO", "message": "Building validation graph."}
{"date": "7/17/2023", "time": "4:32:13", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizing tensors."}
{"date": "7/17/2023", "time": "4:32:14", "status": "RUNNING", "verbosity": "INFO", "message": "Tensors rasterized."}
{"date": "7/17/2023", "time": "4:32:14", "status": "RUNNING", "verbosity": "INFO", "message": "Validation graph built."}
{"date": "7/17/2023", "time": "4:32:15", "status": "RUNNING", "verbosity": "INFO", "message": "Running training loop."}
{"date": "7/17/2023", "time": "4:33:17", "status": "RUNNING", "verbosity": "INFO", "message": "Saving trained model."}
{"date": "7/17/2023", "time": "4:33:17", "status": "RUNNING", "verbosity": "INFO", "message": "Model saved.", "kpi": {"size": 42.91734313964844, "param_count": 11.197893}}
{"date": "7/17/2023", "time": "4:37:17", "status": "STARTED", "verbosity": "INFO", "message": "Starting DetectNet_v2 Training job"}
{"date": "7/17/2023", "time": "4:37:17", "status": "RUNNING", "verbosity": "INFO", "message": "Training gridbox model."}
{"date": "7/17/2023", "time": "4:37:18", "status": "RUNNING", "verbosity": "INFO", "message": "Building DetectNet V2 model"}
{"date": "7/17/2023", "time": "4:37:25", "status": "RUNNING", "verbosity": "INFO", "message": "DetectNet V2 model built."}
{"date": "7/17/2023", "time": "4:37:25", "status": "RUNNING", "verbosity": "INFO", "message": "Building rasterizer."}
{"date": "7/17/2023", "time": "4:37:25", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizers built."}
{"date": "7/17/2023", "time": "4:37:25", "status": "RUNNING", "verbosity": "INFO", "message": "Building training graph."}
{"date": "7/17/2023", "time": "4:37:25", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizing tensors."}
{"date": "7/17/2023", "time": "4:37:25", "status": "RUNNING", "verbosity": "INFO", "message": "Tensors rasterized."}
{"date": "7/17/2023", "time": "4:37:27", "status": "RUNNING", "verbosity": "INFO", "message": "Training graph built."}
{"date": "7/17/2023", "time": "4:37:27", "status": "RUNNING", "verbosity": "INFO", "message": "Building validation graph."}
{"date": "7/17/2023", "time": "4:37:27", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizing tensors."}
{"date": "7/17/2023", "time": "4:37:27", "status": "RUNNING", "verbosity": "INFO", "message": "Tensors rasterized."}
{"date": "7/17/2023", "time": "4:37:28", "status": "RUNNING", "verbosity": "INFO", "message": "Validation graph built."}
{"date": "7/17/2023", "time": "4:37:28", "status": "RUNNING", "verbosity": "INFO", "message": "Running training loop."}
{"date": "7/17/2023", "time": "4:38:3", "status": "STARTED", "verbosity": "INFO", "message": "Starting DetectNet_v2 Training job"}
{"date": "7/17/2023", "time": "4:38:3", "status": "RUNNING", "verbosity": "INFO", "message": "Training gridbox model."}
{"date": "7/17/2023", "time": "4:38:4", "status": "RUNNING", "verbosity": "INFO", "message": "Building DetectNet V2 model"}
{"date": "7/17/2023", "time": "4:38:10", "status": "RUNNING", "verbosity": "INFO", "message": "DetectNet V2 model built."}
{"date": "7/17/2023", "time": "4:38:10", "status": "RUNNING", "verbosity": "INFO", "message": "Building rasterizer."}
{"date": "7/17/2023", "time": "4:38:10", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizers built."}
{"date": "7/17/2023", "time": "4:38:10", "status": "RUNNING", "verbosity": "INFO", "message": "Building training graph."}
{"date": "7/17/2023", "time": "4:38:11", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizing tensors."}
{"date": "7/17/2023", "time": "4:38:11", "status": "RUNNING", "verbosity": "INFO", "message": "Tensors rasterized."}
{"date": "7/17/2023", "time": "4:38:13", "status": "RUNNING", "verbosity": "INFO", "message": "Training graph built."}
{"date": "7/17/2023", "time": "4:38:13", "status": "RUNNING", "verbosity": "INFO", "message": "Building validation graph."}
{"date": "7/17/2023", "time": "4:38:13", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizing tensors."}
{"date": "7/17/2023", "time": "4:38:13", "status": "RUNNING", "verbosity": "INFO", "message": "Tensors rasterized."}
{"date": "7/17/2023", "time": "4:38:14", "status": "RUNNING", "verbosity": "INFO", "message": "Validation graph built."}
{"date": "7/17/2023", "time": "4:38:14", "status": "RUNNING", "verbosity": "INFO", "message": "Running training loop."}
{"date": "7/17/2023", "time": "4:39:12", "status": "RUNNING", "verbosity": "INFO", "message": "Saving trained model."}
{"date": "7/17/2023", "time": "4:39:12", "status": "RUNNING", "verbosity": "INFO", "message": "Model saved.", "kpi": {"size": 42.91734313964844, "param_count": 11.197893}}
{"date": "7/17/2023", "time": "4:39:35", "status": "STARTED", "verbosity": "INFO", "message": "Starting DetectNet_v2 Training job"}
{"date": "7/17/2023", "time": "4:39:35", "status": "RUNNING", "verbosity": "INFO", "message": "Training gridbox model."}
{"date": "7/17/2023", "time": "4:39:36", "status": "RUNNING", "verbosity": "INFO", "message": "Building DetectNet V2 model"}
{"date": "7/17/2023", "time": "4:39:42", "status": "RUNNING", "verbosity": "INFO", "message": "DetectNet V2 model built."}
{"date": "7/17/2023", "time": "4:39:42", "status": "RUNNING", "verbosity": "INFO", "message": "Building rasterizer."}
{"date": "7/17/2023", "time": "4:39:42", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizers built."}
{"date": "7/17/2023", "time": "4:39:42", "status": "RUNNING", "verbosity": "INFO", "message": "Building training graph."}
{"date": "7/17/2023", "time": "4:39:43", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizing tensors."}
{"date": "7/17/2023", "time": "4:39:43", "status": "RUNNING", "verbosity": "INFO", "message": "Tensors rasterized."}
{"date": "7/17/2023", "time": "4:39:45", "status": "RUNNING", "verbosity": "INFO", "message": "Training graph built."}
{"date": "7/17/2023", "time": "4:39:45", "status": "RUNNING", "verbosity": "INFO", "message": "Building validation graph."}
{"date": "7/17/2023", "time": "4:39:45", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizing tensors."}
{"date": "7/17/2023", "time": "4:39:45", "status": "RUNNING", "verbosity": "INFO", "message": "Tensors rasterized."}
{"date": "7/17/2023", "time": "4:39:45", "status": "RUNNING", "verbosity": "INFO", "message": "Validation graph built."}
{"date": "7/17/2023", "time": "4:39:46", "status": "RUNNING", "verbosity": "INFO", "message": "Running training loop."}
{"date": "7/17/2023", "time": "4:43:13", "status": "RUNNING", "verbosity": "INFO", "message": "Saving trained model."}
{"date": "7/17/2023", "time": "4:43:13", "status": "RUNNING", "verbosity": "INFO", "message": "Model saved.", "kpi": {"size": 42.91734313964844, "param_count": 11.197893}}
{"date": "7/17/2023", "time": "4:43:57", "status": "STARTED", "verbosity": "INFO", "message": "Starting DetectNet_v2 Training job"}
{"date": "7/17/2023", "time": "4:43:58", "status": "RUNNING", "verbosity": "INFO", "message": "Training gridbox model."}
{"date": "7/17/2023", "time": "4:43:58", "status": "RUNNING", "verbosity": "INFO", "message": "Building DetectNet V2 model"}
{"date": "7/17/2023", "time": "4:44:5", "status": "RUNNING", "verbosity": "INFO", "message": "DetectNet V2 model built."}
{"date": "7/17/2023", "time": "4:44:5", "status": "RUNNING", "verbosity": "INFO", "message": "Building rasterizer."}
{"date": "7/17/2023", "time": "4:44:5", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizers built."}
{"date": "7/17/2023", "time": "4:44:5", "status": "RUNNING", "verbosity": "INFO", "message": "Building training graph."}
{"date": "7/17/2023", "time": "4:44:6", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizing tensors."}
{"date": "7/17/2023", "time": "4:44:6", "status": "RUNNING", "verbosity": "INFO", "message": "Tensors rasterized."}
{"date": "7/17/2023", "time": "4:44:8", "status": "RUNNING", "verbosity": "INFO", "message": "Training graph built."}
{"date": "7/17/2023", "time": "4:44:8", "status": "RUNNING", "verbosity": "INFO", "message": "Building validation graph."}
{"date": "7/17/2023", "time": "4:44:8", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizing tensors."}
{"date": "7/17/2023", "time": "4:44:8", "status": "RUNNING", "verbosity": "INFO", "message": "Tensors rasterized."}
{"date": "7/17/2023", "time": "4:44:8", "status": "RUNNING", "verbosity": "INFO", "message": "Validation graph built."}
{"date": "7/17/2023", "time": "4:44:9", "status": "RUNNING", "verbosity": "INFO", "message": "Running training loop."}
{"epoch": 0, "max_epoch": 120, "time_per_epoch": "0:00:00", "eta": "0:00:00", "date": "7/17/2023", "time": "4:45:3", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.08348269760608673, "learning_rate": 4.999999418942025e-06}}
{"epoch": 1, "max_epoch": 120, "time_per_epoch": "0:05:51.794499", "eta": "11:37:43.545372", "date": "7/17/2023", "time": "4:50:20", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0020059391390532255, "learning_rate": 7.33899605620536e-06}}
{"epoch": 2, "max_epoch": 120, "time_per_epoch": "0:05:13.905350", "eta": "10:17:20.831353", "date": "7/17/2023", "time": "4:55:34", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0020974413491785526, "learning_rate": 1.0772173482109793e-05}}
{"epoch": 3, "max_epoch": 120, "time_per_epoch": "0:05:13.620584", "eta": "10:11:33.608385", "date": "7/17/2023", "time": "5:0:47", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.002294012578204274, "learning_rate": 1.5811388948350213e-05}}
{"epoch": 4, "max_epoch": 120, "time_per_epoch": "0:05:13.672712", "eta": "10:06:26.034547", "date": "7/17/2023", "time": "5:6:1", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0016739009879529476, "learning_rate": 2.3207949197967537e-05}}
{"epoch": 5, "max_epoch": 120, "time_per_epoch": "0:05:13.603275", "eta": "10:01:04.376659", "date": "7/17/2023", "time": "5:11:16", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0016515564639121294, "learning_rate": 3.406461109989323e-05}}
{"epoch": 6, "max_epoch": 120, "time_per_epoch": "0:05:19.638774", "eta": "10:07:18.820199", "date": "7/17/2023", "time": "5:16:34", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0018087329808622599, "learning_rate": 4.99999696330633e-05}}
{"epoch": 7, "max_epoch": 120, "time_per_epoch": "0:05:19.373834", "eta": "10:01:29.243257", "date": "7/17/2023", "time": "5:21:54", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0009536222205497324, "learning_rate": 7.338992872973904e-05}}
{"epoch": 8, "max_epoch": 120, "time_per_epoch": "0:05:19.178134", "eta": "9:55:47.951031", "date": "7/17/2023", "time": "5:27:13", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.001417638035491109, "learning_rate": 0.00010772168025141582}}
{"epoch": 9, "max_epoch": 120, "time_per_epoch": "0:05:19.040212", "eta": "9:50:13.463496", "date": "7/17/2023", "time": "5:32:32", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.001654088031500578, "learning_rate": 0.0001581138203619048}}
{"epoch": 10, "max_epoch": 120, "time_per_epoch": "0:05:21.308550", "eta": "9:49:03.940539", "date": "7/17/2023", "time": "5:37:54", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.001499806297942996, "learning_rate": 0.00023207937192637473}}
{"epoch": 11, "max_epoch": 120, "time_per_epoch": "0:05:19.970159", "eta": "9:41:16.747285", "date": "7/17/2023", "time": "5:43:13", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0011170611251145601, "learning_rate": 0.00034064598730765283}}
{"epoch": 12, "max_epoch": 120, "time_per_epoch": "0:05:19.196973", "eta": "9:34:33.273119", "date": "7/17/2023", "time": "5:48:32", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0011442308314144611, "learning_rate": 0.0004999999655410647}}
{"epoch": 13, "max_epoch": 120, "time_per_epoch": "0:05:19.578394", "eta": "9:29:54.888202", "date": "7/17/2023", "time": "5:53:52", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0010859733447432518, "learning_rate": 0.0004999999655410647}}
{"epoch": 14, "max_epoch": 120, "time_per_epoch": "0:05:19.522772", "eta": "9:24:29.413865", "date": "7/17/2023", "time": "5:59:12", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0010355253471061587, "learning_rate": 0.0004999999655410647}}
{"epoch": 15, "max_epoch": 120, "time_per_epoch": "0:05:19.404721", "eta": "9:18:57.495757", "date": "7/17/2023", "time": "6:4:31", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0010697536636143923, "learning_rate": 0.0004999999655410647}}
{"epoch": 16, "max_epoch": 120, "time_per_epoch": "0:05:19.750560", "eta": "9:14:14.058195", "date": "7/17/2023", "time": "6:9:51", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0008144653402268887, "learning_rate": 0.0004999999655410647}}
{"epoch": 17, "max_epoch": 120, "time_per_epoch": "0:05:19.393619", "eta": "9:08:17.542788", "date": "7/17/2023", "time": "6:15:10", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0009675847832113504, "learning_rate": 0.0004999999655410647}}
{"epoch": 18, "max_epoch": 120, "time_per_epoch": "0:05:19.336253", "eta": "9:02:52.297847", "date": "7/17/2023", "time": "6:20:29", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0007070779101923108, "learning_rate": 0.0004999999655410647}}
{"epoch": 19, "max_epoch": 120, "time_per_epoch": "0:05:19.191713", "eta": "8:57:18.363023", "date": "7/17/2023", "time": "6:25:49", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0010763728059828281, "learning_rate": 0.0004999999655410647}}
{"epoch": 20, "max_epoch": 120, "time_per_epoch": "0:05:21.247195", "eta": "8:55:24.719548", "date": "7/17/2023", "time": "6:31:10", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0008038085070438683, "learning_rate": 0.0004999999655410647}}
{"date": "7/17/2023", "time": "6:35:54", "status": "STARTED", "verbosity": "INFO", "message": "Starting DetectNet_v2 Training job"}
{"date": "7/17/2023", "time": "6:39:36", "status": "STARTED", "verbosity": "INFO", "message": "Starting DetectNet_v2 Training job"}
{"date": "7/17/2023", "time": "6:39:36", "status": "RUNNING", "verbosity": "INFO", "message": "Training gridbox model."}
{"date": "7/17/2023", "time": "6:39:37", "status": "RUNNING", "verbosity": "INFO", "message": "Building DetectNet V2 model"}
{"date": "7/17/2023", "time": "6:39:44", "status": "RUNNING", "verbosity": "INFO", "message": "DetectNet V2 model built."}
{"date": "7/17/2023", "time": "6:39:44", "status": "RUNNING", "verbosity": "INFO", "message": "Building rasterizer."}
{"date": "7/17/2023", "time": "6:39:44", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizers built."}
{"date": "7/17/2023", "time": "6:39:44", "status": "RUNNING", "verbosity": "INFO", "message": "Building training graph."}
{"date": "7/17/2023", "time": "6:39:44", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizing tensors."}
{"date": "7/17/2023", "time": "6:39:44", "status": "RUNNING", "verbosity": "INFO", "message": "Tensors rasterized."}
{"date": "7/17/2023", "time": "6:39:46", "status": "RUNNING", "verbosity": "INFO", "message": "Training graph built."}
{"date": "7/17/2023", "time": "6:39:46", "status": "RUNNING", "verbosity": "INFO", "message": "Building validation graph."}
{"date": "7/17/2023", "time": "6:39:46", "status": "RUNNING", "verbosity": "INFO", "message": "Rasterizing tensors."}
{"date": "7/17/2023", "time": "6:39:46", "status": "RUNNING", "verbosity": "INFO", "message": "Tensors rasterized."}
{"date": "7/17/2023", "time": "6:39:47", "status": "RUNNING", "verbosity": "INFO", "message": "Validation graph built."}
{"date": "7/17/2023", "time": "6:39:47", "status": "RUNNING", "verbosity": "INFO", "message": "Running training loop."}
{"epoch": 20, "max_epoch": 120, "time_per_epoch": "0:00:00", "eta": "0:00:00", "date": "7/17/2023", "time": "6:40:37", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0010359141742810607, "learning_rate": 0.0004999999655410647}}
{"epoch": 21, "max_epoch": 120, "time_per_epoch": "0:05:05.461116", "eta": "8:24:00.650491", "date": "7/17/2023", "time": "6:45:12", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0007996936328709126, "learning_rate": 0.0004999999655410647}}
{"epoch": 22, "max_epoch": 120, "time_per_epoch": "0:04:43.712058", "eta": "7:43:23.781667", "date": "7/17/2023", "time": "6:49:56", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.000905381515622139, "learning_rate": 0.0004999999655410647}}
{"epoch": 23, "max_epoch": 120, "time_per_epoch": "0:04:43.898131", "eta": "7:38:58.118743", "date": "7/17/2023", "time": "6:54:40", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0011688475497066975, "learning_rate": 0.0004999999655410647}}
{"epoch": 24, "max_epoch": 120, "time_per_epoch": "0:04:43.567147", "eta": "7:33:42.446068", "date": "7/17/2023", "time": "6:59:24", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.000816154875792563, "learning_rate": 0.0004999999655410647}}
{"epoch": 25, "max_epoch": 120, "time_per_epoch": "0:04:43.704262", "eta": "7:29:11.904869", "date": "7/17/2023", "time": "7:4:9", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0008136547403410077, "learning_rate": 0.0004999999655410647}}
{"epoch": 26, "max_epoch": 120, "time_per_epoch": "0:04:45.309213", "eta": "7:26:59.065992", "date": "7/17/2023", "time": "7:8:53", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0008413970354013145, "learning_rate": 0.0004999999655410647}}
{"epoch": 27, "max_epoch": 120, "time_per_epoch": "0:04:43.475169", "eta": "7:19:23.190756", "date": "7/17/2023", "time": "7:13:36", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.00037527477252297103, "learning_rate": 0.0004999999655410647}}
{"epoch": 28, "max_epoch": 120, "time_per_epoch": "0:04:43.415264", "eta": "7:14:34.204300", "date": "7/17/2023", "time": "7:18:20", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0007037532050162554, "learning_rate": 0.0004999999655410647}}
{"epoch": 29, "max_epoch": 120, "time_per_epoch": "0:04:43.333536", "eta": "7:09:43.351746", "date": "7/17/2023", "time": "7:23:3", "status": "RUNNING", "verbosity": "INFO", "graphical": {"loss": 0.0008178155985660851, "learning_rate": 0.0004999999655410647}}
{"date": "7/17/2023", "time": "7:29:26", "status": "RUNNING", "verbosity": "INFO", "message": "Evaluation metrics generated.", "categorical": {"average_precision": {"person": 42.4518}}, "graphical": {"validation cost": 0.00059604, "mean average precision": 42.4518}}
{"epoch": 30, "max_epoch": 120, "time_per_epoch": "0:06:24.068537", "eta": "9:36:06.168330", "date": "7/17/2023", "time": "7:29:27", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 42.4518}}, "graphical": {"loss": 0.0007692332146689296, "learning_rate": 0.0004999999655410647}}
{"epoch": 31, "max_epoch": 120, "time_per_epoch": "0:04:43.262470", "eta": "7:00:10.359788", "date": "7/17/2023", "time": "7:34:10", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 42.4518}}, "graphical": {"loss": 0.0005347420810721815, "learning_rate": 0.0004999999655410647}}
{"epoch": 32, "max_epoch": 120, "time_per_epoch": "0:04:43.195311", "eta": "6:55:21.187395", "date": "7/17/2023", "time": "7:38:53", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 42.4518}}, "graphical": {"loss": 0.0006269064033403993, "learning_rate": 0.0004999999655410647}}
{"epoch": 33, "max_epoch": 120, "time_per_epoch": "0:04:42.986042", "eta": "6:50:19.785635", "date": "7/17/2023", "time": "7:43:36", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 42.4518}}, "graphical": {"loss": 0.0005945453303866088, "learning_rate": 0.0004999999655410647}}
{"epoch": 34, "max_epoch": 120, "time_per_epoch": "0:04:42.889016", "eta": "6:45:28.455410", "date": "7/17/2023", "time": "7:48:19", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 42.4518}}, "graphical": {"loss": 0.000625360757112503, "learning_rate": 0.0004999999655410647}}
{"epoch": 35, "max_epoch": 120, "time_per_epoch": "0:04:42.798118", "eta": "6:40:37.840040", "date": "7/17/2023", "time": "7:53:2", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 42.4518}}, "graphical": {"loss": 0.0006513449479825795, "learning_rate": 0.0004999999655410647}}
{"epoch": 36, "max_epoch": 120, "time_per_epoch": "0:04:43.108352", "eta": "6:36:21.101563", "date": "7/17/2023", "time": "7:57:45", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 42.4518}}, "graphical": {"loss": 0.0005676725413650274, "learning_rate": 0.0004999999655410647}}
{"epoch": 37, "max_epoch": 120, "time_per_epoch": "0:04:42.660224", "eta": "6:31:00.798628", "date": "7/17/2023", "time": "8:2:28", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 42.4518}}, "graphical": {"loss": 0.0006278053624555469, "learning_rate": 0.0004999999655410647}}
{"epoch": 38, "max_epoch": 120, "time_per_epoch": "0:04:42.819244", "eta": "6:26:31.178000", "date": "7/17/2023", "time": "8:7:11", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 42.4518}}, "graphical": {"loss": 0.0005442343535833061, "learning_rate": 0.0004999999655410647}}
{"epoch": 39, "max_epoch": 120, "time_per_epoch": "0:04:42.603978", "eta": "6:21:30.922211", "date": "7/17/2023", "time": "8:11:53", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 42.4518}}, "graphical": {"loss": 0.0008050085743889213, "learning_rate": 0.0004999999655410647}}
{"date": "7/17/2023", "time": "8:18:16", "status": "RUNNING", "verbosity": "INFO", "message": "Evaluation metrics generated.", "categorical": {"average_precision": {"person": 44.0137}}, "graphical": {"validation cost": 0.00056554, "mean average precision": 44.0137}}
{"epoch": 40, "max_epoch": 120, "time_per_epoch": "0:06:23.487418", "eta": "8:31:18.993435", "date": "7/17/2023", "time": "8:18:17", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 44.0137}}, "graphical": {"loss": 0.0005753854056820273, "learning_rate": 0.0004999999655410647}}
{"epoch": 41, "max_epoch": 120, "time_per_epoch": "0:04:42.797005", "eta": "6:12:20.963428", "date": "7/17/2023", "time": "8:23:0", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 44.0137}}, "graphical": {"loss": 0.0005398548673838377, "learning_rate": 0.0004999999655410647}}
{"epoch": 42, "max_epoch": 120, "time_per_epoch": "0:04:42.788655", "eta": "6:07:37.515056", "date": "7/17/2023", "time": "8:27:42", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 44.0137}}, "graphical": {"loss": 0.0004475876921787858, "learning_rate": 0.0004999999655410647}}
{"epoch": 43, "max_epoch": 120, "time_per_epoch": "0:04:42.586643", "eta": "6:02:39.171510", "date": "7/17/2023", "time": "8:32:25", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 44.0137}}, "graphical": {"loss": 0.0006884614704176784, "learning_rate": 0.0004999999655410647}}
{"epoch": 44, "max_epoch": 120, "time_per_epoch": "0:04:42.705848", "eta": "5:58:05.644446", "date": "7/17/2023", "time": "8:37:8", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 44.0137}}, "graphical": {"loss": 0.0006761282566003501, "learning_rate": 0.0004999999655410647}}
{"epoch": 45, "max_epoch": 120, "time_per_epoch": "0:04:42.602437", "eta": "5:53:15.182776", "date": "7/17/2023", "time": "8:41:51", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 44.0137}}, "graphical": {"loss": 0.0006064173649065197, "learning_rate": 0.0004999999655410647}}
{"epoch": 46, "max_epoch": 120, "time_per_epoch": "0:04:43.109066", "eta": "5:49:10.070920", "date": "7/17/2023", "time": "8:46:33", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 44.0137}}, "graphical": {"loss": 0.0005307600367814302, "learning_rate": 0.0004999999655410647}}
{"epoch": 47, "max_epoch": 120, "time_per_epoch": "0:04:42.587268", "eta": "5:43:48.870555", "date": "7/17/2023", "time": "8:51:16", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 44.0137}}, "graphical": {"loss": 0.0005501710693351924, "learning_rate": 0.0004999999655410647}}
{"epoch": 48, "max_epoch": 120, "time_per_epoch": "0:04:42.654875", "eta": "5:39:11.150986", "date": "7/17/2023", "time": "8:55:59", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 44.0137}}, "graphical": {"loss": 0.00043661106610670686, "learning_rate": 0.0004999999655410647}}
{"epoch": 49, "max_epoch": 120, "time_per_epoch": "0:04:42.645656", "eta": "5:34:27.841584", "date": "7/17/2023", "time": "9:0:41", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 44.0137}}, "graphical": {"loss": 0.0004092070448677987, "learning_rate": 0.0004999999655410647}}
{"date": "7/17/2023", "time": "9:7:1", "status": "RUNNING", "verbosity": "INFO", "message": "Evaluation metrics generated.", "categorical": {"average_precision": {"person": 46.0129}}, "graphical": {"validation cost": 0.00052939, "mean average precision": 46.0129}}
{"epoch": 50, "max_epoch": 120, "time_per_epoch": "0:06:20.314167", "eta": "7:23:41.991692", "date": "7/17/2023", "time": "9:7:2", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 46.0129}}, "graphical": {"loss": 0.0005246022483333945, "learning_rate": 0.0004999999655410647}}
{"epoch": 51, "max_epoch": 120, "time_per_epoch": "0:04:42.707730", "eta": "5:25:06.833374", "date": "7/17/2023", "time": "9:11:44", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 46.0129}}, "graphical": {"loss": 0.0009914434049278498, "learning_rate": 0.0004999999655410647}}
{"epoch": 52, "max_epoch": 120, "time_per_epoch": "0:04:42.774337", "eta": "5:20:28.654920", "date": "7/17/2023", "time": "9:16:27", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 46.0129}}, "graphical": {"loss": 0.0006990225519984961, "learning_rate": 0.0004999999655410647}}
{"epoch": 53, "max_epoch": 120, "time_per_epoch": "0:04:42.764216", "eta": "5:15:45.202484", "date": "7/17/2023", "time": "9:21:10", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 46.0129}}, "graphical": {"loss": 0.0005543153965845704, "learning_rate": 0.0004999999655410647}}
{"epoch": 54, "max_epoch": 120, "time_per_epoch": "0:04:42.626095", "eta": "5:10:53.322274", "date": "7/17/2023", "time": "9:25:52", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 46.0129}}, "graphical": {"loss": 0.0005490025505423546, "learning_rate": 0.0004999999655410647}}
{"epoch": 55, "max_epoch": 120, "time_per_epoch": "0:04:42.691724", "eta": "5:06:14.962049", "date": "7/17/2023", "time": "9:30:35", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 46.0129}}, "graphical": {"loss": 0.0008019246743060648, "learning_rate": 0.0004999999655410647}}
{"epoch": 56, "max_epoch": 120, "time_per_epoch": "0:04:43.075784", "eta": "5:01:56.850174", "date": "7/17/2023", "time": "9:35:18", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 46.0129}}, "graphical": {"loss": 0.0007502197986468673, "learning_rate": 0.0004999999655410647}}
{"epoch": 57, "max_epoch": 120, "time_per_epoch": "0:04:42.674805", "eta": "4:56:48.512740", "date": "7/17/2023", "time": "9:40:1", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 46.0129}}, "graphical": {"loss": 0.00047319824807345867, "learning_rate": 0.0004999999655410647}}
{"epoch": 58, "max_epoch": 120, "time_per_epoch": "0:04:42.744978", "eta": "4:52:10.188633", "date": "7/17/2023", "time": "9:44:44", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 46.0129}}, "graphical": {"loss": 0.00048376506310887635, "learning_rate": 0.0004999999655410647}}
{"epoch": 59, "max_epoch": 120, "time_per_epoch": "0:04:42.756568", "eta": "4:47:28.150645", "date": "7/17/2023", "time": "9:49:26", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 46.0129}}, "graphical": {"loss": 0.0004875571758020669, "learning_rate": 0.0004999999655410647}}
{"date": "7/17/2023", "time": "9:56:9", "status": "RUNNING", "verbosity": "INFO", "message": "Evaluation metrics generated.", "categorical": {"average_precision": {"person": 45.0749}}, "graphical": {"validation cost": 0.0004935, "mean average precision": 45.0749}}
{"epoch": 60, "max_epoch": 120, "time_per_epoch": "0:06:42.831645", "eta": "6:42:49.898715", "date": "7/17/2023", "time": "9:56:10", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.0749}}, "graphical": {"loss": 0.0007119715446606278, "learning_rate": 0.0004999999655410647}}
{"epoch": 61, "max_epoch": 120, "time_per_epoch": "0:04:42.651570", "eta": "4:37:56.442621", "date": "7/17/2023", "time": "10:0:52", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.0749}}, "graphical": {"loss": 0.0006158510223031044, "learning_rate": 0.0004999999655410647}}
{"epoch": 62, "max_epoch": 120, "time_per_epoch": "0:04:42.699932", "eta": "4:33:16.596048", "date": "7/17/2023", "time": "10:5:35", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.0749}}, "graphical": {"loss": 0.0004017040482722223, "learning_rate": 0.0004999999655410647}}
{"epoch": 63, "max_epoch": 120, "time_per_epoch": "0:04:42.569860", "eta": "4:28:26.481992", "date": "7/17/2023", "time": "10:10:17", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.0749}}, "graphical": {"loss": 0.0004066486726514995, "learning_rate": 0.0004999999655410647}}
{"epoch": 64, "max_epoch": 120, "time_per_epoch": "0:04:42.474781", "eta": "4:23:38.587751", "date": "7/17/2023", "time": "10:15:0", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.0749}}, "graphical": {"loss": 0.000743586104363203, "learning_rate": 0.0004999999655410647}}
{"epoch": 65, "max_epoch": 120, "time_per_epoch": "0:04:42.517062", "eta": "4:18:58.438407", "date": "7/17/2023", "time": "10:19:43", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.0749}}, "graphical": {"loss": 0.0005829475121572614, "learning_rate": 0.0004999999655410647}}
{"epoch": 66, "max_epoch": 120, "time_per_epoch": "0:04:43.015303", "eta": "4:14:42.826369", "date": "7/17/2023", "time": "10:24:25", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.0749}}, "graphical": {"loss": 0.0004660442937165499, "learning_rate": 0.0004999999655410647}}
{"epoch": 67, "max_epoch": 120, "time_per_epoch": "0:04:42.582709", "eta": "4:09:36.883568", "date": "7/17/2023", "time": "10:29:8", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.0749}}, "graphical": {"loss": 0.0006119029130786657, "learning_rate": 0.0004999999655410647}}
{"epoch": 68, "max_epoch": 120, "time_per_epoch": "0:04:42.506586", "eta": "4:04:50.342451", "date": "7/17/2023", "time": "10:33:50", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.0749}}, "graphical": {"loss": 0.0006066476926207542, "learning_rate": 0.0004999999655410647}}
{"epoch": 69, "max_epoch": 120, "time_per_epoch": "0:04:42.674942", "eta": "4:00:16.422067", "date": "7/17/2023", "time": "10:38:33", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.0749}}, "graphical": {"loss": 0.0005154453683644533, "learning_rate": 0.0004999999655410647}}
{"date": "7/17/2023", "time": "10:44:52", "status": "RUNNING", "verbosity": "INFO", "message": "Evaluation metrics generated.", "categorical": {"average_precision": {"person": 45.7696}}, "graphical": {"validation cost": 0.0004886, "mean average precision": 45.7696}}
{"epoch": 70, "max_epoch": 120, "time_per_epoch": "0:06:19.615065", "eta": "5:16:20.753243", "date": "7/17/2023", "time": "10:44:53", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.7696}}, "graphical": {"loss": 0.000796058215200901, "learning_rate": 0.0004999999655410647}}
{"epoch": 71, "max_epoch": 120, "time_per_epoch": "0:04:42.727457", "eta": "3:50:53.645395", "date": "7/17/2023", "time": "10:49:35", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.7696}}, "graphical": {"loss": 0.0006632215809077024, "learning_rate": 0.0004999999655410647}}
{"epoch": 72, "max_epoch": 120, "time_per_epoch": "0:04:42.472977", "eta": "3:45:58.702915", "date": "7/17/2023", "time": "10:54:18", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.7696}}, "graphical": {"loss": 0.0006199810886755586, "learning_rate": 0.0004999999655410647}}
{"epoch": 73, "max_epoch": 120, "time_per_epoch": "0:04:42.411473", "eta": "3:41:13.339244", "date": "7/17/2023", "time": "10:59:0", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.7696}}, "graphical": {"loss": 0.0006051285308785737, "learning_rate": 0.0004999999655410647}}
{"epoch": 74, "max_epoch": 120, "time_per_epoch": "0:04:42.368881", "eta": "3:36:28.968514", "date": "7/17/2023", "time": "11:3:43", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.7696}}, "graphical": {"loss": 0.0005377380293793976, "learning_rate": 0.0004999999655410647}}
{"epoch": 75, "max_epoch": 120, "time_per_epoch": "0:04:42.445763", "eta": "3:31:50.059340", "date": "7/17/2023", "time": "11:8:25", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.7696}}, "graphical": {"loss": 0.0006874604732729495, "learning_rate": 0.0004999999655410647}}
{"epoch": 76, "max_epoch": 120, "time_per_epoch": "0:04:42.682832", "eta": "3:27:18.044619", "date": "7/17/2023", "time": "11:13:8", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.7696}}, "graphical": {"loss": 0.0005276214797049761, "learning_rate": 0.0004999999655410647}}
{"epoch": 77, "max_epoch": 120, "time_per_epoch": "0:04:42.268682", "eta": "3:22:17.553347", "date": "7/17/2023", "time": "11:17:50", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.7696}}, "graphical": {"loss": 0.0006389018963091075, "learning_rate": 0.0004999999655410647}}
{"epoch": 78, "max_epoch": 120, "time_per_epoch": "0:04:42.389726", "eta": "3:17:40.368479", "date": "7/17/2023", "time": "11:22:32", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.7696}}, "graphical": {"loss": 0.0004033438744954765, "learning_rate": 0.0004999999655410647}}
{"epoch": 79, "max_epoch": 120, "time_per_epoch": "0:04:42.250654", "eta": "3:12:52.276794", "date": "7/17/2023", "time": "11:27:15", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 45.7696}}, "graphical": {"loss": 0.0008167055784724653, "learning_rate": 0.0004999999655410647}}
{"date": "7/17/2023", "time": "11:33:43", "status": "RUNNING", "verbosity": "INFO", "message": "Evaluation metrics generated.", "categorical": {"average_precision": {"person": 47.214}}, "graphical": {"validation cost": 0.00045291, "mean average precision": 47.214}}
{"epoch": 80, "max_epoch": 120, "time_per_epoch": "0:06:29.134158", "eta": "4:19:25.366306", "date": "7/17/2023", "time": "11:33:44", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 47.214}}, "graphical": {"loss": 0.0006652584997937083, "learning_rate": 0.0004999999655410647}}
{"epoch": 81, "max_epoch": 120, "time_per_epoch": "0:04:42.516592", "eta": "3:03:38.147089", "date": "7/17/2023", "time": "11:38:26", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 47.214}}, "graphical": {"loss": 0.0003518757876008749, "learning_rate": 0.0004999999655410647}}
{"epoch": 82, "max_epoch": 120, "time_per_epoch": "0:04:42.393189", "eta": "2:58:50.941180", "date": "7/17/2023", "time": "11:43:9", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 47.214}}, "graphical": {"loss": 0.00042172387475147843, "learning_rate": 0.0004999999655410647}}
{"epoch": 83, "max_epoch": 120, "time_per_epoch": "0:04:42.249845", "eta": "2:54:03.244266", "date": "7/17/2023", "time": "11:47:51", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 47.214}}, "graphical": {"loss": 0.000620962237007916, "learning_rate": 0.0004999999655410647}}
{"epoch": 84, "max_epoch": 120, "time_per_epoch": "0:04:42.296324", "eta": "2:49:22.667682", "date": "7/17/2023", "time": "11:52:33", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 47.214}}, "graphical": {"loss": 0.0005362640367820859, "learning_rate": 0.0004999999655410647}}
{"epoch": 85, "max_epoch": 120, "time_per_epoch": "0:04:42.233516", "eta": "2:44:38.173059", "date": "7/17/2023", "time": "11:57:16", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 47.214}}, "graphical": {"loss": 0.0006397647666744888, "learning_rate": 0.0004399613826535642}}
{"epoch": 86, "max_epoch": 120, "time_per_epoch": "0:04:42.758123", "eta": "2:40:13.776196", "date": "7/17/2023", "time": "12:1:58", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 47.214}}, "graphical": {"loss": 0.0006093424744904041, "learning_rate": 0.0003871320222970098}}
{"epoch": 87, "max_epoch": 120, "time_per_epoch": "0:04:42.423976", "eta": "2:35:19.991198", "date": "7/17/2023", "time": "12:6:41", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 47.214}}, "graphical": {"loss": 0.0007574311457574368, "learning_rate": 0.0003406458126846701}}
{"epoch": 88, "max_epoch": 120, "time_per_epoch": "0:04:42.277302", "eta": "2:30:32.873672", "date": "7/17/2023", "time": "12:11:23", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 47.214}}, "graphical": {"loss": 0.00046219793148338795, "learning_rate": 0.00029974186327308416}}
{"epoch": 89, "max_epoch": 120, "time_per_epoch": "0:04:42.198498", "eta": "2:25:48.153424", "date": "7/17/2023", "time": "12:16:5", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 47.214}}, "graphical": {"loss": 0.000699295662343502, "learning_rate": 0.00026374970912002027}}
{"date": "7/17/2023", "time": "12:22:12", "status": "RUNNING", "verbosity": "INFO", "message": "Evaluation metrics generated.", "categorical": {"average_precision": {"person": 49.6275}}, "graphical": {"validation cost": 0.00037967, "mean average precision": 49.6275}}
{"epoch": 90, "max_epoch": 120, "time_per_epoch": "0:06:07.838762", "eta": "3:03:55.162854", "date": "7/17/2023", "time": "12:22:13", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 49.6275}}, "graphical": {"loss": 0.0007041740464046597, "learning_rate": 0.00023207937192637473}}
{"epoch": 91, "max_epoch": 120, "time_per_epoch": "0:04:42.579590", "eta": "2:16:34.808119", "date": "7/17/2023", "time": "12:26:55", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 49.6275}}, "graphical": {"loss": 0.0004572337493300438, "learning_rate": 0.000204211930395104}}
{"epoch": 92, "max_epoch": 120, "time_per_epoch": "0:04:42.203065", "eta": "2:11:41.685811", "date": "7/17/2023", "time": "12:31:38", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 49.6275}}, "graphical": {"loss": 0.0004553842591121793, "learning_rate": 0.0001796907454263419}}
{"epoch": 93, "max_epoch": 120, "time_per_epoch": "0:04:42.175920", "eta": "2:06:58.749847", "date": "7/17/2023", "time": "12:36:20", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 49.6275}}, "graphical": {"loss": 0.000437720213085413, "learning_rate": 0.0001581138203619048}}
{"epoch": 94, "max_epoch": 120, "time_per_epoch": "0:04:42.230498", "eta": "2:02:17.992944", "date": "7/17/2023", "time": "12:41:2", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 49.6275}}, "graphical": {"loss": 0.0006978698656894267, "learning_rate": 0.00013912809663452208}}
{"epoch": 95, "max_epoch": 120, "time_per_epoch": "0:04:42.078161", "eta": "1:57:31.954025", "date": "7/17/2023", "time": "12:45:44", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 49.6275}}, "graphical": {"loss": 0.0005263276980258524, "learning_rate": 0.00012242174125276506}}
{"epoch": 96, "max_epoch": 120, "time_per_epoch": "0:04:42.507020", "eta": "1:53:00.168474", "date": "7/17/2023", "time": "12:50:27", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 49.6275}}, "graphical": {"loss": 0.00041725501068867743, "learning_rate": 0.00010772168025141582}}
{"epoch": 97, "max_epoch": 120, "time_per_epoch": "0:04:42.173552", "eta": "1:48:09.991691", "date": "7/17/2023", "time": "12:55:9", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 49.6275}}, "graphical": {"loss": 0.0003237630589865148, "learning_rate": 9.478676656726748e-05}}
{"epoch": 98, "max_epoch": 120, "time_per_epoch": "0:04:42.137586", "eta": "1:43:27.026900", "date": "7/17/2023", "time": "12:59:51", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 49.6275}}, "graphical": {"loss": 0.0005156167899258435, "learning_rate": 8.340504427906126e-05}}
{"epoch": 99, "max_epoch": 120, "time_per_epoch": "0:04:41.980297", "eta": "1:38:41.586244", "date": "7/17/2023", "time": "13:4:33", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 49.6275}}, "graphical": {"loss": 0.0004690948990173638, "learning_rate": 7.338992872973904e-05}}
{"date": "7/17/2023", "time": "13:10:36", "status": "RUNNING", "verbosity": "INFO", "message": "Evaluation metrics generated.", "categorical": {"average_precision": {"person": 50.2584}}, "graphical": {"validation cost": 0.00033487, "mean average precision": 50.2584}}
{"epoch": 100, "max_epoch": 120, "time_per_epoch": "0:06:03.646995", "eta": "2:01:12.939906", "date": "7/17/2023", "time": "13:10:37", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.2584}}, "graphical": {"loss": 0.0005354421446099877, "learning_rate": 6.457747076638043e-05}}
{"epoch": 101, "max_epoch": 120, "time_per_epoch": "0:04:42.221555", "eta": "1:29:22.209545", "date": "7/17/2023", "time": "13:15:19", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.2584}}, "graphical": {"loss": 0.0003953016421291977, "learning_rate": 5.682318806066178e-05}}
{"epoch": 102, "max_epoch": 120, "time_per_epoch": "0:04:42.307295", "eta": "1:24:41.531307", "date": "7/17/2023", "time": "13:20:1", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.2584}}, "graphical": {"loss": 0.0004831579572055489, "learning_rate": 4.99999696330633e-05}}
{"epoch": 103, "max_epoch": 120, "time_per_epoch": "0:04:42.145366", "eta": "1:19:56.471229", "date": "7/17/2023", "time": "13:24:43", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.2584}}, "graphical": {"loss": 0.0004373858100734651, "learning_rate": 4.3996114982292056e-05}}
{"epoch": 104, "max_epoch": 120, "time_per_epoch": "0:04:42.152150", "eta": "1:15:14.434399", "date": "7/17/2023", "time": "13:29:25", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.2584}}, "graphical": {"loss": 0.0004038185579702258, "learning_rate": 3.871318403980695e-05}}
{"epoch": 105, "max_epoch": 120, "time_per_epoch": "0:04:42.047632", "eta": "1:10:30.714480", "date": "7/17/2023", "time": "13:34:8", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.2584}}, "graphical": {"loss": 0.0005458624800667167, "learning_rate": 3.4064578358083963e-05}}
{"epoch": 106, "max_epoch": 120, "time_per_epoch": "0:04:42.606318", "eta": "1:05:56.488445", "date": "7/17/2023", "time": "13:38:50", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.2584}}, "graphical": {"loss": 0.0003227457054890692, "learning_rate": 2.9974200515425764e-05}}
{"epoch": 107, "max_epoch": 120, "time_per_epoch": "0:04:42.083961", "eta": "1:01:07.091496", "date": "7/17/2023", "time": "13:43:32", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.2584}}, "graphical": {"loss": 0.0003769779286812991, "learning_rate": 2.6374984372523613e-05}}
{"epoch": 108, "max_epoch": 120, "time_per_epoch": "0:04:42.099796", "eta": "0:56:25.197550", "date": "7/17/2023", "time": "13:48:14", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.2584}}, "graphical": {"loss": 0.00044073606841266155, "learning_rate": 2.3207949197967537e-05}}
{"epoch": 109, "max_epoch": 120, "time_per_epoch": "0:04:42.082946", "eta": "0:51:42.912407", "date": "7/17/2023", "time": "13:52:56", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.2584}}, "graphical": {"loss": 0.0004974184557795525, "learning_rate": 2.0421202862053178e-05}}
{"date": "7/17/2023", "time": "13:58:58", "status": "RUNNING", "verbosity": "INFO", "message": "Evaluation metrics generated.", "categorical": {"average_precision": {"person": 50.765}}, "graphical": {"validation cost": 0.0003217, "mean average precision": 50.765}}
{"epoch": 110, "max_epoch": 120, "time_per_epoch": "0:06:01.734219", "eta": "1:00:17.342191", "date": "7/17/2023", "time": "13:58:58", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.765}}, "graphical": {"loss": 0.00038379954639822245, "learning_rate": 1.796906508388929e-05}}
{"epoch": 111, "max_epoch": 120, "time_per_epoch": "0:04:42.084734", "eta": "0:42:18.762606", "date": "7/17/2023", "time": "14:3:40", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.765}}, "graphical": {"loss": 0.00038585884612984955, "learning_rate": 1.5811374396434985e-05}}
{"epoch": 112, "max_epoch": 120, "time_per_epoch": "0:04:42.218400", "eta": "0:37:37.747196", "date": "7/17/2023", "time": "14:8:22", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.765}}, "graphical": {"loss": 0.0004340156156104058, "learning_rate": 1.3912788745074067e-05}}
{"epoch": 113, "max_epoch": 120, "time_per_epoch": "0:04:42.025355", "eta": "0:32:54.177482", "date": "7/17/2023", "time": "14:13:4", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.765}}, "graphical": {"loss": 0.0003907736681867391, "learning_rate": 1.2242180673638359e-05}}
{"epoch": 114, "max_epoch": 120, "time_per_epoch": "0:04:42.075183", "eta": "0:28:12.451100", "date": "7/17/2023", "time": "14:17:47", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.765}}, "graphical": {"loss": 0.00048779972712509334, "learning_rate": 1.0772173482109793e-05}}
{"epoch": 115, "max_epoch": 120, "time_per_epoch": "0:04:42.234058", "eta": "0:23:31.170290", "date": "7/17/2023", "time": "14:22:29", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.765}}, "graphical": {"loss": 0.00045339742791838944, "learning_rate": 9.478681022301316e-06}}
{"epoch": 116, "max_epoch": 120, "time_per_epoch": "0:04:42.323625", "eta": "0:18:49.294499", "date": "7/17/2023", "time": "14:27:11", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.765}}, "graphical": {"loss": 0.0003857891133520752, "learning_rate": 8.340507520188112e-06}}
{"epoch": 117, "max_epoch": 120, "time_per_epoch": "0:04:42.031899", "eta": "0:14:06.095697", "date": "7/17/2023", "time": "14:31:53", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.765}}, "graphical": {"loss": 0.00031314475927501917, "learning_rate": 7.33899605620536e-06}}
{"epoch": 118, "max_epoch": 120, "time_per_epoch": "0:04:41.983871", "eta": "0:09:23.967743", "date": "7/17/2023", "time": "14:36:35", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.765}}, "graphical": {"loss": 0.00037927847006358206, "learning_rate": 6.457743438659236e-06}}
{"epoch": 119, "max_epoch": 120, "time_per_epoch": "0:04:42.160514", "eta": "0:04:42.160514", "date": "7/17/2023", "time": "14:41:17", "status": "RUNNING", "verbosity": "INFO", "categorical": {"average_precision": {"person": 50.765}}, "graphical": {"loss": 0.0005409232107922435, "learning_rate": 5.682315986632602e-06}}
{"date": "7/17/2023", "time": "14:47:18", "status": "RUNNING", "verbosity": "INFO", "message": "Evaluation metrics generated.", "categorical": {"average_precision": {"person": 50.8595}}, "graphical": {"validation cost": 0.00031845, "mean average precision": 50.8595}}
{"date": "7/17/2023", "time": "14:47:18", "status": "RUNNING", "verbosity": "INFO", "message": "Training loop completed.", "categorical": {"average_precision": {"person": 50.8595}}, "graphical": {"validation cost": 0.00031845, "mean average precision": 50.8595}}
{"date": "7/17/2023", "time": "14:47:18", "status": "RUNNING", "verbosity": "INFO", "message": "Saving trained model.", "categorical": {"average_precision": {"person": 50.8595}}, "graphical": {"validation cost": 0.00031845, "mean average precision": 50.8595}}
{"date": "7/17/2023", "time": "14:47:18", "status": "RUNNING", "verbosity": "INFO", "message": "Model saved.", "categorical": {"average_precision": {"person": 50.8595}}, "graphical": {"validation cost": 0.00031845, "mean average precision": 50.8595}, "kpi": {"size": 42.91734313964844, "param_count": 11.197893}}
{"date": "7/17/2023", "time": "14:47:18", "status": "RUNNING", "verbosity": "INFO", "message": "Training op complete.", "categorical": {"average_precision": {"person": 50.8595}}, "graphical": {"validation cost": 0.00031845, "mean average precision": 50.8595}, "kpi": {"size": 42.91734313964844, "param_count": 11.197893}}
{"date": "7/17/2023", "time": "14:47:18", "status": "SUCCESS", "verbosity": "INFO", "message": "DetectNet_v2 training job complete.", "categorical": {"average_precision": {"person": 50.8595}}, "graphical": {"validation cost": 0.00031845, "mean average precision": 50.8595}, "kpi": {"size": 42.91734313964844, "param_count": 11.197893}}

I am sharing full log.

The latest mAP is 50.8595%.

Could you set lower batch-size to 4 and larger training epoch and retry?

Thank you for your answer.
As you said, we will proceed with the learning by lowering the batch size and increasing the epoch.
We will also remove duplicate labels.

Additionally, the AP seen during learning is 50.8595%. However, the evaluation results show about 38%. What’s wrong with this?

You can run tao detectnet_v2 evaluate again, but modify above to below.
validation_fold: 0

Did you keep the training spec file when you get above training log?
Normally, the mAP is the same between evaluation during training and tao detectnet_v2 evaluate.

So, to compare the result, need to make sure both are using the same validation dataset.

I’m sorry. I made a mistake.

The reason why the AP in train and the AP in evaluation are different is because I made a mistake in applying a different spec file.

If you apply the exact spec file, the AP came out normal, and we will share the results after learning it again with the proposed method.

Thank you very much.

Great. Glad to know it is expected now.

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.