Can't pull docker container

Hello, everyone!
I have Jetson nano 2Gb, image for 4.4.1 version and sd card with 64Gb.
I’m taking"Getting Started with AI on Jetson Nano" and trying to pull docker container.
in the tutorial for beginners ( Your First Jetson Container), it is suggested to pull docker container.
sudo docker pull
and it works good.
But when I try to pull docker container from course, it’s failed.

$ sudo docker run --runtime nvidia -it --rm --network host   --volume ~/nvdli-data:/nvdli-nano/data     --volume /tmp/argus_socket:/tmp/argus_socket    --device /dev/video0
Unable to find image '' locally
v2.0.1-r32.4.4: Pulling from nvidia/dli/dli-nano-ai
e74fe6ef6bd6: Pull complete
7dcdd1c8f1d2: Pull complete
148ea20d31e0: Pull complete
fbc4cd4d050b: Extracting  172.3MB/172.3MB
e74fe6ef6bd6: Downloading  17.04MB/24.56MB
4ba0c94f9855: Pulling fs layer
6fb19c1062d0: Pulling fs layer
84ff17ad4b18: Pulling fs layer
5ac903fdc4a8: Download complete
ecf00917e120: Download complete
30d000a9cd22: Download complete
a26b515ffe8f: Download complete
a199cb2dd71e: Download complete
c4f4e0f882d3: Download complete
3e956de9ea4b: Download complete
e26b78d1aaed: Download complete
ac42496d0bc2: Download complete
7db2983f5802: Download complete
f313550a9e60: Download complete
a742b8e794d7: Download complete
628353978f08: Download complete
7adc69170422: Download complete
e0d1fc183e52: Download complete
948ac0abde32: Download complete
adfb60e46ee1: Download complete
863e90653906: Download complete
3e9098193eb0: Download complete
c8725fd1629c: Download complete
97d7d811f1b0: Download complete
c3a4ee995e14: Download complete
ff3bd72b6820: Download complete
0dd1878ac100: Download complete
61d86993c5c7: Download complete
ea941455f954: Download complete
32dfdf6113cc: Download complete
5659b08dd9db: Download complete
ee14e611e4ea: Download complete
96f36b823bb9: Download complete
8ad049561e6a: Download complete
0332d32d1d8d: Download complete
docker: failed to register layer: lstat /var/lib/docker/overlay2/fda754955e54359f9ece1e847ac6212d3b64721e24ad54c07893ab7097e7e89b/diff/usr/lib/python2.7/ structure needs cleaning.
See 'docker run --help'.

Also about my system

$free -m
total used free shared buff/cache available
Mem: 1979 495 404 28 1080 1367
Swap: 9181 0 9181
uname -a
Linux linux 4.9.140-tegra #1 SMP PREEMPT Fri Oct 16 12:32:46 PDT 2020 aarch64 aarch64 aarch64 GNU/Linux

$ sudo docker info
 Debug Mode: false

 Containers: 0
  Running: 0
  Paused: 0
  Stopped: 0
 Images: 0
 Server Version: 19.03.6
 Storage Driver: overlay2
  Backing Filesystem: extfs
  Supports d_type: true
  Native Overlay Diff: true
 Logging Driver: json-file
 Cgroup Driver: cgroupfs
  Volume: local
  Network: bridge host ipvlan macvlan null overlay
  Log: awslogs fluentd gcplogs gelf journald json-file local logentries splunk syslog
 Swarm: inactive
 Runtimes: nvidia runc
 Default Runtime: runc
 Init Binary: docker-init
 containerd version:
 runc version:
 init version:
 Security Options:
   Profile: default
 Kernel Version: 4.9.140-tegra
 Operating System: Ubuntu 18.04.5 LTS
 OSType: linux
 Architecture: aarch64
 CPUs: 4
 Total Memory: 1.933GiB
 Name: linux
 Docker Root Dir: /var/lib/docker
 Debug Mode: false
 Experimental: false
 Insecure Registries:
 Live Restore Enabled: false


Could you check your storage status and share the log with us first?

$ df -h


$  df -h
Filesystem      Size  Used Avail Use% Mounted on
/dev/mmcblk0p1   62G   23G   37G  39% /
none            952M     0  952M   0% /dev
tmpfs           990M  4.0K  990M   1% /dev/shm
tmpfs           990M   30M  961M   3% /run
tmpfs           5.0M  4.0K  5.0M   1% /run/lock
tmpfs           990M     0  990M   0% /sys/fs/cgroup
tmpfs           198M   16K  198M   1% /run/user/120
tmpfs           198M     0  198M   0% /run/user/1000


Sorry for the late update.

Is it possible that the filesystem is used by someone else? (ex. another app?)
To confirm this, would you mind to reflash the Nano 2GB and pull the docker again?


Thank you, I’ve already decided this problem. I use another SD card, and it works correct. My old SD card hasn’t enough memory, I see it in test

Good to know it works now.