I’m converting a tensorflow frozen model to uff. Uff model was converted but failed in converting to TRTEngine.
The message came out in UFF conversion is as follows.
UFF Version 0.6.5
=== Automatically deduced input nodes ===
[name: "input"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: -1
}
dim {
size: 24
}
dim {
size: 94
}
dim {
size: 3
}
}
}
}
]
=========================================
=== Automatically deduced output nodes ===
[name: "d_predictions"
op: "SparseToDense"
input: "CTCGreedyDecoder"
input: "d_predictions/output_shape"
input: "ToInt32"
input: "d_predictions/default_value"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "Tindices"
value {
type: DT_INT64
}
}
attr {
key: "validate_indices"
value {
b: true
}
}
]
==========================================
Using output node d_predictions
Converting to UFF graph
Warning: No conversion function registered for layer: SparseToDense yet.
Converting d_predictions as custom op: SparseToDense
W0727 17:56:18.319413 140001436956160 deprecation_wrapper.py:119] From /home/itc/venv/lib/python3.6/site-packages/uff/converters/tensorflow/converter.py:179: The name tf.AttrValue is deprecated. Please use tf.compat.v1.AttrValue instead.
Warning: No conversion function registered for layer: Cast yet.
Converting ToInt32 as custom op: Cast
Warning: No conversion function registered for layer: CTCGreedyDecoder yet.
Converting CTCGreedyDecoder as custom op: CTCGreedyDecoder
Warning: No conversion function registered for layer: Fill yet.
Converting Fill as custom op: Fill
Warning: No conversion function registered for layer: Tile yet.
Converting Tile as custom op: Tile
DEBUG: convert reshape to flatten node
DEBUG [/home/itc/venv/lib/python3.6/site-packages/uff/converters/tensorflow/converter.py:96] Marking ['d_predictions'] as outputs
No. nodes: 172
UFF Output written to graph.pb.uff
That means SparseToDense, Cast, Fill, Tile have no equivalent TRT api, so I need to create plugins manually.
Is that true?