Core dump Illegal Instruction on detectnet_v2 example

Hi,

I’m trying to run example detectnet_v2 and facing an Illegal Instruction error when I execute the tlt-train command. I’m running it on RTX 2080 GPU on a Dell R720 server. Here’s the output log:

root@2a9a93f3988b:/workspace# tlt-train detectnet_v2 -e $SPECS_DIR/detectnet_v2_train_resnet18_kitti.txt -r $USER_EXPERIMENT_DIR/experiment_dir_unpruned -k $KEY -n resnet18_detector
Using TensorFlow backend.

[[2548,1],0]: A high-performance Open MPI point-to-point messaging module
was unable to find any relevant network interfaces:

Module: OpenFabrics (openib)
Host: 2a9a93f3988b

Another transport will be used instead, although this may result in
lower performance.

NOTE: You can disable this warning by setting the MCA parameter
btl_base_warn_component_unused to 0.

2019-10-28 22:38:12.469830: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x65adf50 executing computations on platform CUDA. Devices:
2019-10-28 22:38:12.469899: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): GeForce RTX 2080, Compute Capability 7.5
2019-10-28 22:38:12.473510: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3299965000 Hz
2019-10-28 22:38:12.475618: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x6618c90 executing computations on platform Host. Devices:
2019-10-28 22:38:12.475665: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): ,
2019-10-28 22:38:12.475894: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties:
name: GeForce RTX 2080 major: 7 minor: 5 memoryClockRate(GHz): 1.71
pciBusID: 0000:42:00.0
totalMemory: 7.79GiB freeMemory: 7.68GiB
2019-10-28 22:38:12.475937: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2019-10-28 22:38:12.476720: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-10-28 22:38:12.476743: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0
2019-10-28 22:38:12.476757: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N
2019-10-28 22:38:12.476895: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 7469 MB memory) → physical GPU (device: 0, name: GeForce RTX 2080, pci bus id: 0000:42:00.0, compute capability: 7.5)
2019-10-28 22:38:12,478 [INFO] iva.detectnet_v2.scripts.train: Loading experiment spec at /workspace/examples/detectnet_v2/specs/detectnet_v2_train_resnet18_kitti.txt.
2019-10-28 22:38:12,479 [INFO] iva.detectnet_v2.spec_handler.spec_loader: Merging specification from /workspace/examples/detectnet_v2/specs/detectnet_v2_train_resnet18_kitti.txt
WARNING:tensorflow:From ./detectnet_v2/dataloader/utilities.py:114: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and:
tf.data.TFRecordDataset(path)
2019-10-28 22:38:12,493 [WARNING] tensorflow: From ./detectnet_v2/dataloader/utilities.py:114: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and:
tf.data.TFRecordDataset(path)
2019-10-28 22:38:12,608 [INFO] iva.detectnet_v2.scripts.train: Cannot iterate over exactly 6434 samples with a batch size of 4; each epoch will therefore take one extra step.
WARNING:tensorflow:From /usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
2019-10-28 22:38:12,615 [WARNING] tensorflow: From /usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From /usr/local/lib/python2.7/dist-packages/horovod/tensorflow/init.py:91: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
2019-10-28 22:38:12,629 [WARNING] tensorflow: From /usr/local/lib/python2.7/dist-packages/horovod/tensorflow/init.py:91: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.


Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) (None, 3, 384, 1248) 0


conv1 (Conv2D) (None, 64, 192, 624) 9472 input_1[0][0]


bn_conv1 (BatchNormalization) (None, 64, 192, 624) 256 conv1[0][0]


activation_1 (Activation) (None, 64, 192, 624) 0 bn_conv1[0][0]


block_1a_conv_1 (Conv2D) (None, 64, 96, 312) 36928 activation_1[0][0]


block_1a_bn_1 (BatchNormalizati (None, 64, 96, 312) 256 block_1a_conv_1[0][0]


activation_2 (Activation) (None, 64, 96, 312) 0 block_1a_bn_1[0][0]


block_1a_conv_2 (Conv2D) (None, 64, 96, 312) 36928 activation_2[0][0]


block_1a_conv_shortcut (Conv2D) (None, 64, 96, 312) 4160 activation_1[0][0]


block_1a_bn_2 (BatchNormalizati (None, 64, 96, 312) 256 block_1a_conv_2[0][0]


block_1a_bn_shortcut (BatchNorm (None, 64, 96, 312) 256 block_1a_conv_shortcut[0][0]


add_1 (Add) (None, 64, 96, 312) 0 block_1a_bn_2[0][0]
block_1a_bn_shortcut[0][0]


activation_3 (Activation) (None, 64, 96, 312) 0 add_1[0][0]


block_1b_conv_1 (Conv2D) (None, 64, 96, 312) 36928 activation_3[0][0]


block_1b_bn_1 (BatchNormalizati (None, 64, 96, 312) 256 block_1b_conv_1[0][0]


activation_4 (Activation) (None, 64, 96, 312) 0 block_1b_bn_1[0][0]


block_1b_conv_2 (Conv2D) (None, 64, 96, 312) 36928 activation_4[0][0]


block_1b_bn_2 (BatchNormalizati (None, 64, 96, 312) 256 block_1b_conv_2[0][0]


add_2 (Add) (None, 64, 96, 312) 0 block_1b_bn_2[0][0]
activation_3[0][0]


activation_5 (Activation) (None, 64, 96, 312) 0 add_2[0][0]


block_2a_conv_1 (Conv2D) (None, 128, 48, 156) 73856 activation_5[0][0]


block_2a_bn_1 (BatchNormalizati (None, 128, 48, 156) 512 block_2a_conv_1[0][0]


activation_6 (Activation) (None, 128, 48, 156) 0 block_2a_bn_1[0][0]


block_2a_conv_2 (Conv2D) (None, 128, 48, 156) 147584 activation_6[0][0]


block_2a_conv_shortcut (Conv2D) (None, 128, 48, 156) 8320 activation_5[0][0]


block_2a_bn_2 (BatchNormalizati (None, 128, 48, 156) 512 block_2a_conv_2[0][0]


block_2a_bn_shortcut (BatchNorm (None, 128, 48, 156) 512 block_2a_conv_shortcut[0][0]


add_3 (Add) (None, 128, 48, 156) 0 block_2a_bn_2[0][0]
block_2a_bn_shortcut[0][0]


activation_7 (Activation) (None, 128, 48, 156) 0 add_3[0][0]


block_2b_conv_1 (Conv2D) (None, 128, 48, 156) 147584 activation_7[0][0]


block_2b_bn_1 (BatchNormalizati (None, 128, 48, 156) 512 block_2b_conv_1[0][0]


activation_8 (Activation) (None, 128, 48, 156) 0 block_2b_bn_1[0][0]


block_2b_conv_2 (Conv2D) (None, 128, 48, 156) 147584 activation_8[0][0]


block_2b_bn_2 (BatchNormalizati (None, 128, 48, 156) 512 block_2b_conv_2[0][0]


add_4 (Add) (None, 128, 48, 156) 0 block_2b_bn_2[0][0]
activation_7[0][0]


activation_9 (Activation) (None, 128, 48, 156) 0 add_4[0][0]


block_3a_conv_1 (Conv2D) (None, 256, 24, 78) 295168 activation_9[0][0]


block_3a_bn_1 (BatchNormalizati (None, 256, 24, 78) 1024 block_3a_conv_1[0][0]


activation_10 (Activation) (None, 256, 24, 78) 0 block_3a_bn_1[0][0]


block_3a_conv_2 (Conv2D) (None, 256, 24, 78) 590080 activation_10[0][0]


block_3a_conv_shortcut (Conv2D) (None, 256, 24, 78) 33024 activation_9[0][0]


block_3a_bn_2 (BatchNormalizati (None, 256, 24, 78) 1024 block_3a_conv_2[0][0]


block_3a_bn_shortcut (BatchNorm (None, 256, 24, 78) 1024 block_3a_conv_shortcut[0][0]


add_5 (Add) (None, 256, 24, 78) 0 block_3a_bn_2[0][0]
block_3a_bn_shortcut[0][0]


activation_11 (Activation) (None, 256, 24, 78) 0 add_5[0][0]


block_3b_conv_1 (Conv2D) (None, 256, 24, 78) 590080 activation_11[0][0]


block_3b_bn_1 (BatchNormalizati (None, 256, 24, 78) 1024 block_3b_conv_1[0][0]


activation_12 (Activation) (None, 256, 24, 78) 0 block_3b_bn_1[0][0]


block_3b_conv_2 (Conv2D) (None, 256, 24, 78) 590080 activation_12[0][0]


block_3b_bn_2 (BatchNormalizati (None, 256, 24, 78) 1024 block_3b_conv_2[0][0]


add_6 (Add) (None, 256, 24, 78) 0 block_3b_bn_2[0][0]
activation_11[0][0]


activation_13 (Activation) (None, 256, 24, 78) 0 add_6[0][0]


block_4a_conv_1 (Conv2D) (None, 512, 24, 78) 1180160 activation_13[0][0]


block_4a_bn_1 (BatchNormalizati (None, 512, 24, 78) 2048 block_4a_conv_1[0][0]


activation_14 (Activation) (None, 512, 24, 78) 0 block_4a_bn_1[0][0]


block_4a_conv_2 (Conv2D) (None, 512, 24, 78) 2359808 activation_14[0][0]


block_4a_conv_shortcut (Conv2D) (None, 512, 24, 78) 131584 activation_13[0][0]


block_4a_bn_2 (BatchNormalizati (None, 512, 24, 78) 2048 block_4a_conv_2[0][0]


block_4a_bn_shortcut (BatchNorm (None, 512, 24, 78) 2048 block_4a_conv_shortcut[0][0]


add_7 (Add) (None, 512, 24, 78) 0 block_4a_bn_2[0][0]
block_4a_bn_shortcut[0][0]


activation_15 (Activation) (None, 512, 24, 78) 0 add_7[0][0]


block_4b_conv_1 (Conv2D) (None, 512, 24, 78) 2359808 activation_15[0][0]


block_4b_bn_1 (BatchNormalizati (None, 512, 24, 78) 2048 block_4b_conv_1[0][0]


activation_16 (Activation) (None, 512, 24, 78) 0 block_4b_bn_1[0][0]


block_4b_conv_2 (Conv2D) (None, 512, 24, 78) 2359808 activation_16[0][0]


block_4b_bn_2 (BatchNormalizati (None, 512, 24, 78) 2048 block_4b_conv_2[0][0]


add_8 (Add) (None, 512, 24, 78) 0 block_4b_bn_2[0][0]
activation_15[0][0]


activation_17 (Activation) (None, 512, 24, 78) 0 add_8[0][0]


output_bbox (Conv2D) (None, 12, 24, 78) 6156 activation_17[0][0]


output_cov (Conv2D) (None, 3, 24, 78) 1539 activation_17[0][0]

Total params: 11,203,023
Trainable params: 11,193,295
Non-trainable params: 9,728


target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
2019-10-28 22:38:28,811 [INFO] iva.detectnet_v2.scripts.train: Found 6434 samples in training set
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
2019-10-28 22:38:36,257 [INFO] iva.detectnet_v2.scripts.train: Found 1047 samples in validation set
INFO:tensorflow:Create CheckpointSaverHook.
2019-10-28 22:38:42,325 [INFO] tensorflow: Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
2019-10-28 22:38:43,744 [INFO] tensorflow: Graph was finalized.
2019-10-28 22:38:43.745938: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2019-10-28 22:38:43.746047: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-10-28 22:38:43.746066: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0
2019-10-28 22:38:43.746081: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N
2019-10-28 22:38:43.746247: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 7469 MB memory) → physical GPU (device: 0, name: GeForce RTX 2080, pci bus id: 0000:42:00.0, compute capability: 7.5)
INFO:tensorflow:Running local_init_op.
2019-10-28 22:38:46,530 [INFO] tensorflow: Running local_init_op.
INFO:tensorflow:Done running local_init_op.
2019-10-28 22:38:46,878 [INFO] tensorflow: Done running local_init_op.
INFO:tensorflow:Saving checkpoints for step-0.
2019-10-28 22:39:01,161 [INFO] tensorflow: Saving checkpoints for step-0.
2019-10-28 22:39:29.080295: I tensorflow/stream_executor/dso_loader.cc:152] successfully opened CUDA library libcublas.so.10.0 locally
2019-10-28 22:39:29.386243: I tensorflow/core/kernels/cuda_solvers.cc:159] Creating CudaSolver handles for stream 0x6674b30
/usr/local/bin/tlt-train: line 32: 49 Illegal instruction (core dumped) tlt-train-g1 ${PYTHON_ARGS[*]}

Any ideas?

Hi amertahir,
Could you please attach your spec file, i.e, detectnet_v2_train_resnet18_kitti.txt?

here’s the spec file:

random_seed: 42
dataset_config {
data_sources {
tfrecords_path: “/workspace/tlt/tfrecords/kitti_trainval/*”
image_directory_path: “/workspace/tlt/data/training”
}
image_extension: “png”
target_class_mapping {
key: “car”
value: “car”
}
target_class_mapping {
key: “cyclist”
value: “cyclist”
}
target_class_mapping {
key: “pedestrian”
value: “pedestrian”
}
target_class_mapping {
key: “person_sitting”
value: “pedestrian”
}
target_class_mapping {
key: “van”
value: “car”
}
validation_fold: 0
}
augmentation_config {
preprocessing {
output_image_width: 1248
output_image_height: 384
min_bbox_width: 1.0
min_bbox_height: 1.0
output_image_channel: 3
}
spatial_augmentation {
hflip_probability: 0.5
zoom_min: 1.0
zoom_max: 1.0
translate_max_x: 8.0
translate_max_y: 8.0
}
color_augmentation {
hue_rotation_max: 25.0
saturation_shift_max: 0.20000000298
contrast_scale_max: 0.10000000149
contrast_center: 0.5
}
}
postprocessing_config {
target_class_config {
key: “car”
value {
clustering_config {
coverage_threshold: 0.00499999988824
dbscan_eps: 0.20000000298
dbscan_min_samples: 0.0500000007451
minimum_bounding_box_height: 20
}
}
}
target_class_config {
key: “cyclist”
value {
clustering_config {
coverage_threshold: 0.00499999988824
dbscan_eps: 0.15000000596
dbscan_min_samples: 0.0500000007451
minimum_bounding_box_height: 20
}
}
}
target_class_config {
key: “pedestrian”
value {
clustering_config {
coverage_threshold: 0.00749999983236
dbscan_eps: 0.230000004172
dbscan_min_samples: 0.0500000007451
minimum_bounding_box_height: 20
}
}
}
}
model_config {
pretrained_model_file: “/workspace/tlt/pretrained_resnet18/tlt_resnet18_detectnet_v2_v1/resnet18.hdf5”
num_layers: 18
use_batch_norm: true
activation {
activation_type: “relu”
}
objective_set {
bbox {
scale: 35.0
offset: 0.5
}
cov {
}
}
training_precision {
backend_floatx: FLOAT32
}
arch: “resnet”
}
evaluation_config {
validation_period_during_training: 10
first_validation_epoch: 1
minimum_detection_ground_truth_overlap {
key: “car”
value: 0.699999988079
}
minimum_detection_ground_truth_overlap {
key: “cyclist”
value: 0.5
}
minimum_detection_ground_truth_overlap {
key: “pedestrian”
value: 0.5
}
evaluation_box_config {
key: “car”
value {
minimum_height: 20
maximum_height: 9999
minimum_width: 10
maximum_width: 9999
}
}
evaluation_box_config {
key: “cyclist”
value {
minimum_height: 20
maximum_height: 9999
minimum_width: 10
maximum_width: 9999
}
}
evaluation_box_config {
key: “pedestrian”
value {
minimum_height: 20
maximum_height: 9999
minimum_width: 10
maximum_width: 9999
}
}
average_precision_mode: INTEGRATE
}
cost_function_config {
target_classes {
name: “car”
class_weight: 1.0
coverage_foreground_weight: 0.0500000007451
objectives {
name: “cov”
initial_weight: 1.0
weight_target: 1.0
}
objectives {
name: “bbox”
initial_weight: 10.0
weight_target: 10.0
}
}
target_classes {
name: “cyclist”
class_weight: 8.0
coverage_foreground_weight: 0.0500000007451
objectives {
name: “cov”
initial_weight: 1.0
weight_target: 1.0
}
objectives {
name: “bbox”
initial_weight: 10.0
weight_target: 1.0
}
}
target_classes {
name: “pedestrian”
class_weight: 4.0
coverage_foreground_weight: 0.0500000007451
objectives {
name: “cov”
initial_weight: 1.0
weight_target: 1.0
}
objectives {
name: “bbox”
initial_weight: 10.0
weight_target: 10.0
}
}
enable_autoweighting: true
max_objective_weight: 0.999899983406
min_objective_weight: 9.99999974738e-05
}
training_config {
batch_size_per_gpu: 4
num_epochs: 120
learning_rate {
soft_start_annealing_schedule {
min_learning_rate: 5e-06
max_learning_rate: 5e-04
soft_start: 0.10000000149
annealing: 0.699999988079
}
}
regularizer {
type: L1
weight: 3.00000002618e-09
}
optimizer {
adam {
epsilon: 9.99999993923e-09
beta1: 0.899999976158
beta2: 0.999000012875
}
}
cost_scaling {
initial_exponent: 20.0
increment: 0.005
decrement: 1.0
}
checkpoint_interval: 10
}
bbox_rasterizer_config {
target_class_config {
key: “car”
value {
cov_center_x: 0.5
cov_center_y: 0.5
cov_radius_x: 0.40000000596
cov_radius_y: 0.40000000596
bbox_min_radius: 1.0
}
}
target_class_config {
key: “cyclist”
value {
cov_center_x: 0.5
cov_center_y: 0.5
cov_radius_x: 1.0
cov_radius_y: 1.0
bbox_min_radius: 1.0
}
}
target_class_config {
key: “pedestrian”
value {
cov_center_x: 0.5
cov_center_y: 0.5
cov_radius_x: 1.0
cov_radius_y: 1.0
bbox_min_radius: 1.0
}
}
deadzone_radius: 0.400000154972
}

I actually figured it out, I’m using an old CPU which doesn’t support BMI2 set of instructions. The culprit is SHLX instruction which was added as part of BMI2 in Haswell processors. Mine is Intel(R) Xeon(R) CPU E5-2643 which doesn’t support that instruction.

The SHLX instruction is found at:
0x00007f10743a7327 in _RasterizeBboxOp::Compute(tensorflow::OpKernelContext*) ()
from /usr/local/lib/python2.7/dist-packages/modulus/processors/…/lib/op_rasterize_bbox.so

Hi amertahir,
Thanks for the info. If there is latest result of tlt-train, please let me know.

Yes I’m using the latest version of the container: nvcr.io/nvidia/tlt-streamanalytics:v1.0_py2

Hi amertahir,
If you are getting the error, possibly you are using an incompatible type of CPU that the TensorFlow package in TLT container does not supported. Please try to do training on other machines.

Same thing happened with my Intel Xeon computer. So is there any solution for this? Or using another machine is the final solution?

For your computer, could you please try python -c ‘import tensorflow as tf’?

Hints from How to Resolve The Error “Illegal instruction (core dumped)” when Running “import tensorflow” in a Python Program | Amikelive | Technology Blog

It didn’t show anything actually. The illegal instruction only happened when I ran it inside jupyter. Maybe I’ll take a look at your link. Thank you.

Hi Morganh / all,

i have same issue, and it’s not because of tensorflow!
What i can do now?

Starting to train how explained in the docs:

!tlt-train detectnet_v2 -e $SPECS_DIR/detectnet_v2_train_resnet18_kitti_face.txt \
                    -r $USER_EXPERIMENT_DIR/experiment_dir_unpruned \
                    -k $KEY \
                    -n resnet18_detector


Using TensorFlow backend.
2020-06-14 18:40:23,000 [INFO] iva.detectnet_v2.scripts.train: Loading experiment spec at /workspace/examples/detectnet_v2/specs/detectnet_v2_train_resnet18_kitti_face.txt.
2020-06-14 18:40:23,001 [INFO] iva.detectnet_v2.spec_handler.spec_loader: Merging specification from /workspace/examples/detectnet_v2/specs/detectnet_v2_train_resnet18_kitti_face.txt
2020-06-14 18:40:23,111 [INFO] iva.detectnet_v2.scripts.train: Cannot iterate over exactly 277 samples with a batch size of 16; each epoch will therefore take one extra step.
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            (None, 3, 544, 960)  0                                            
__________________________________________________________________________________________________
conv1 (Conv2D)                  (None, 64, 272, 480) 9472        input_1[0][0]                    
__________________________________________________________________________________________________
bn_conv1 (BatchNormalization)   (None, 64, 272, 480) 256         conv1[0][0]                      
__________________________________________________________________________________________________
activation_1 (Activation)       (None, 64, 272, 480) 0           bn_conv1[0][0]                   
__________________________________________________________________________________________________
block_1a_conv_1 (Conv2D)        (None, 64, 136, 240) 36928       activation_1[0][0]               
__________________________________________________________________________________________________
block_1a_bn_1 (BatchNormalizati (None, 64, 136, 240) 256         block_1a_conv_1[0][0]            
__________________________________________________________________________________________________
block_1a_relu_1 (Activation)    (None, 64, 136, 240) 0           block_1a_bn_1[0][0]              
__________________________________________________________________________________________________
block_1a_conv_2 (Conv2D)        (None, 64, 136, 240) 36928       block_1a_relu_1[0][0]            
__________________________________________________________________________________________________
block_1a_conv_shortcut (Conv2D) (None, 64, 136, 240) 4160        activation_1[0][0]               
__________________________________________________________________________________________________
block_1a_bn_2 (BatchNormalizati (None, 64, 136, 240) 256         block_1a_conv_2[0][0]            
__________________________________________________________________________________________________
block_1a_bn_shortcut (BatchNorm (None, 64, 136, 240) 256         block_1a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_1 (Add)                     (None, 64, 136, 240) 0           block_1a_bn_2[0][0]              
                                                                 block_1a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_1a_relu (Activation)      (None, 64, 136, 240) 0           add_1[0][0]                      
__________________________________________________________________________________________________
block_1b_conv_1 (Conv2D)        (None, 64, 136, 240) 36928       block_1a_relu[0][0]              
__________________________________________________________________________________________________
block_1b_bn_1 (BatchNormalizati (None, 64, 136, 240) 256         block_1b_conv_1[0][0]            
__________________________________________________________________________________________________
block_1b_relu_1 (Activation)    (None, 64, 136, 240) 0           block_1b_bn_1[0][0]              
__________________________________________________________________________________________________
block_1b_conv_2 (Conv2D)        (None, 64, 136, 240) 36928       block_1b_relu_1[0][0]            
__________________________________________________________________________________________________
block_1b_bn_2 (BatchNormalizati (None, 64, 136, 240) 256         block_1b_conv_2[0][0]            
__________________________________________________________________________________________________
add_2 (Add)                     (None, 64, 136, 240) 0           block_1b_bn_2[0][0]              
                                                                 block_1a_relu[0][0]              
__________________________________________________________________________________________________
block_1b_relu (Activation)      (None, 64, 136, 240) 0           add_2[0][0]                      
__________________________________________________________________________________________________
block_2a_conv_1 (Conv2D)        (None, 128, 68, 120) 73856       block_1b_relu[0][0]              
__________________________________________________________________________________________________
block_2a_bn_1 (BatchNormalizati (None, 128, 68, 120) 512         block_2a_conv_1[0][0]            
__________________________________________________________________________________________________
block_2a_relu_1 (Activation)    (None, 128, 68, 120) 0           block_2a_bn_1[0][0]              
__________________________________________________________________________________________________
block_2a_conv_2 (Conv2D)        (None, 128, 68, 120) 147584      block_2a_relu_1[0][0]            
__________________________________________________________________________________________________
block_2a_conv_shortcut (Conv2D) (None, 128, 68, 120) 8320        block_1b_relu[0][0]              
__________________________________________________________________________________________________
block_2a_bn_2 (BatchNormalizati (None, 128, 68, 120) 512         block_2a_conv_2[0][0]            
__________________________________________________________________________________________________
block_2a_bn_shortcut (BatchNorm (None, 128, 68, 120) 512         block_2a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_3 (Add)                     (None, 128, 68, 120) 0           block_2a_bn_2[0][0]              
                                                                 block_2a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_2a_relu (Activation)      (None, 128, 68, 120) 0           add_3[0][0]                      
__________________________________________________________________________________________________
block_2b_conv_1 (Conv2D)        (None, 128, 68, 120) 147584      block_2a_relu[0][0]              
__________________________________________________________________________________________________
block_2b_bn_1 (BatchNormalizati (None, 128, 68, 120) 512         block_2b_conv_1[0][0]            
__________________________________________________________________________________________________
block_2b_relu_1 (Activation)    (None, 128, 68, 120) 0           block_2b_bn_1[0][0]              
__________________________________________________________________________________________________
block_2b_conv_2 (Conv2D)        (None, 128, 68, 120) 147584      block_2b_relu_1[0][0]            
__________________________________________________________________________________________________
block_2b_bn_2 (BatchNormalizati (None, 128, 68, 120) 512         block_2b_conv_2[0][0]            
__________________________________________________________________________________________________
add_4 (Add)                     (None, 128, 68, 120) 0           block_2b_bn_2[0][0]              
                                                                 block_2a_relu[0][0]              
__________________________________________________________________________________________________
block_2b_relu (Activation)      (None, 128, 68, 120) 0           add_4[0][0]                      
__________________________________________________________________________________________________
block_3a_conv_1 (Conv2D)        (None, 256, 34, 60)  295168      block_2b_relu[0][0]              
__________________________________________________________________________________________________
block_3a_bn_1 (BatchNormalizati (None, 256, 34, 60)  1024        block_3a_conv_1[0][0]            
__________________________________________________________________________________________________
block_3a_relu_1 (Activation)    (None, 256, 34, 60)  0           block_3a_bn_1[0][0]              
__________________________________________________________________________________________________
block_3a_conv_2 (Conv2D)        (None, 256, 34, 60)  590080      block_3a_relu_1[0][0]            
__________________________________________________________________________________________________
block_3a_conv_shortcut (Conv2D) (None, 256, 34, 60)  33024       block_2b_relu[0][0]              
__________________________________________________________________________________________________
block_3a_bn_2 (BatchNormalizati (None, 256, 34, 60)  1024        block_3a_conv_2[0][0]            
__________________________________________________________________________________________________
block_3a_bn_shortcut (BatchNorm (None, 256, 34, 60)  1024        block_3a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_5 (Add)                     (None, 256, 34, 60)  0           block_3a_bn_2[0][0]              
                                                                 block_3a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_3a_relu (Activation)      (None, 256, 34, 60)  0           add_5[0][0]                      
__________________________________________________________________________________________________
block_3b_conv_1 (Conv2D)        (None, 256, 34, 60)  590080      block_3a_relu[0][0]              
__________________________________________________________________________________________________
block_3b_bn_1 (BatchNormalizati (None, 256, 34, 60)  1024        block_3b_conv_1[0][0]            
__________________________________________________________________________________________________
block_3b_relu_1 (Activation)    (None, 256, 34, 60)  0           block_3b_bn_1[0][0]              
__________________________________________________________________________________________________
block_3b_conv_2 (Conv2D)        (None, 256, 34, 60)  590080      block_3b_relu_1[0][0]            
__________________________________________________________________________________________________
block_3b_bn_2 (BatchNormalizati (None, 256, 34, 60)  1024        block_3b_conv_2[0][0]            
__________________________________________________________________________________________________
add_6 (Add)                     (None, 256, 34, 60)  0           block_3b_bn_2[0][0]              
                                                                 block_3a_relu[0][0]              
__________________________________________________________________________________________________
block_3b_relu (Activation)      (None, 256, 34, 60)  0           add_6[0][0]                      
__________________________________________________________________________________________________
block_4a_conv_1 (Conv2D)        (None, 512, 34, 60)  1180160     block_3b_relu[0][0]              
__________________________________________________________________________________________________
block_4a_bn_1 (BatchNormalizati (None, 512, 34, 60)  2048        block_4a_conv_1[0][0]            
__________________________________________________________________________________________________
block_4a_relu_1 (Activation)    (None, 512, 34, 60)  0           block_4a_bn_1[0][0]              
__________________________________________________________________________________________________
block_4a_conv_2 (Conv2D)        (None, 512, 34, 60)  2359808     block_4a_relu_1[0][0]            
__________________________________________________________________________________________________
block_4a_conv_shortcut (Conv2D) (None, 512, 34, 60)  131584      block_3b_relu[0][0]              
__________________________________________________________________________________________________
block_4a_bn_2 (BatchNormalizati (None, 512, 34, 60)  2048        block_4a_conv_2[0][0]            
__________________________________________________________________________________________________
block_4a_bn_shortcut (BatchNorm (None, 512, 34, 60)  2048        block_4a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_7 (Add)                     (None, 512, 34, 60)  0           block_4a_bn_2[0][0]              
                                                                 block_4a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_4a_relu (Activation)      (None, 512, 34, 60)  0           add_7[0][0]                      
__________________________________________________________________________________________________
block_4b_conv_1 (Conv2D)        (None, 512, 34, 60)  2359808     block_4a_relu[0][0]              
__________________________________________________________________________________________________
block_4b_bn_1 (BatchNormalizati (None, 512, 34, 60)  2048        block_4b_conv_1[0][0]            
__________________________________________________________________________________________________
block_4b_relu_1 (Activation)    (None, 512, 34, 60)  0           block_4b_bn_1[0][0]              
__________________________________________________________________________________________________
block_4b_conv_2 (Conv2D)        (None, 512, 34, 60)  2359808     block_4b_relu_1[0][0]            
__________________________________________________________________________________________________
block_4b_bn_2 (BatchNormalizati (None, 512, 34, 60)  2048        block_4b_conv_2[0][0]            
__________________________________________________________________________________________________
add_8 (Add)                     (None, 512, 34, 60)  0           block_4b_bn_2[0][0]              
                                                                 block_4a_relu[0][0]              
__________________________________________________________________________________________________
block_4b_relu (Activation)      (None, 512, 34, 60)  0           add_8[0][0]                      
__________________________________________________________________________________________________
output_bbox (Conv2D)            (None, 8, 34, 60)    4104        block_4b_relu[0][0]              
__________________________________________________________________________________________________
output_cov (Conv2D)             (None, 2, 34, 60)    1026        block_4b_relu[0][0]              
==================================================================================================
Total params: 11,200,458
Trainable params: 11,190,730
Non-trainable params: 9,728
__________________________________________________________________________________________________

target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
2020-06-14 18:40:44,300 [INFO] iva.detectnet_v2.scripts.train: Found 277 samples in training set
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
2020-06-14 18:41:01,753 [INFO] iva.detectnet_v2.scripts.train: Found 45 samples in validation set
/usr/local/bin/tlt-train: line 32:  1254 Illegal instruction     (core dumped) tlt-train-g1 ${PYTHON_ARGS[*]}

Its not because of tensorflow:

root@5cb4ac324131:/workspace/tlt-experiments/data/testing/image# python                                             |
Python 2.7.12 (default, Oct  8 2019, 14:14:10)                                                                      |
[GCC 5.4.0 20160609] on linux2                                                                                      |
Type "help", "copyright", "credits" or "license" for more information.                                              |
>>> import tensorflow as tf                                                                                         |
>>> tf.__version__                                                                                                  |
'1.13.1'                                           

My config file:

random_seed: 42
dataset_config {
  data_sources {
    tfrecords_path: "/workspace/tlt-experiments/data/tfrecords/kitti_trainval/*"
    image_directory_path: "/workspace/tlt-experiments/data/training"
  }
  image_extension: "jpg"
  target_class_mapping {
    key: "face"
    value: "face"
  }
  target_class_mapping {
    key: "hand"
    value: "hand"
  }
  validation_fold: 0
}
augmentation_config {
  preprocessing {
    output_image_width: 960
    output_image_height: 544
    min_bbox_width: 1.0
    min_bbox_height: 1.0
    output_image_channel: 3
  }
  spatial_augmentation {
    hflip_probability: 0.5
    zoom_min: 1.0
    zoom_max: 1.0
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    hue_rotation_max: 25.0
    saturation_shift_max: 0.20000000298
    contrast_scale_max: 0.10000000149
    contrast_center: 0.5
  }
}
postprocessing_config {
  target_class_config {
    key: "face"
    value {
      clustering_config {
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.20000000298
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "hand"
    value {
      clustering_config {
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.15000000596
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
}
model_config {
  pretrained_model_file: "/workspace/tlt-experiments/detectnet_v2/pretrained_resnet18/tlt_pretrained_detectnet_v2_vresnet18/resnet18.hdf5"
  num_layers: 18
  use_batch_norm: true
  objective_set {
    bbox {
      scale: 35.0
      offset: 0.5
    }
    cov {
    }
  }
  training_precision {
    backend_floatx: FLOAT32
  }
  arch: "resnet"
}
evaluation_config {
  validation_period_during_training: 10
  first_validation_epoch: 30
  minimum_detection_ground_truth_overlap {
    key: "face"
    value: 0.699999988079
  }
  minimum_detection_ground_truth_overlap {
    key: "hand"
    value: 0.6
  }
  evaluation_box_config {
    key: "face"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "hand"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  average_precision_mode: INTEGRATE
}
cost_function_config {
  target_classes {
    name: "face"
    class_weight: 1.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  target_classes {
    name: "hand"
    class_weight: 1.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 1.0
    }
  }
  enable_autoweighting: true
  max_objective_weight: 0.999899983406
  min_objective_weight: 9.99999974738e-05
}
training_config {
  batch_size_per_gpu: 16
  num_epochs: 160
  learning_rate {
    soft_start_annealing_schedule {
      min_learning_rate: 5e-06
      max_learning_rate: 5e-04
      soft_start: 0.10000000149
      annealing: 0.699999988079
    }
  }
  regularizer {
    type: L1
    weight: 3.00000002618e-09
  }
  optimizer {
    adam {
      epsilon: 9.99999993923e-09
      beta1: 0.899999976158
      beta2: 0.999000012875
    }
  }
  cost_scaling {
    initial_exponent: 20.0
    increment: 0.005
    decrement: 1.0
  }
  checkpoint_interval: 10
}
bbox_rasterizer_config {
  target_class_config {
    key: "face"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.40000000596
      cov_radius_y: 0.40000000596
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "hand"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.4
      cov_radius_y: 0.4
      bbox_min_radius: 1.0
    }
  }
  deadzone_radius: 0.600000154972
}

I too not really understand the error, why this happen? i used a suggested size for the training data 960x544:

target/truncation is not updated to match the crop areaif the dataset contains target/truncation.

i have ubuntu 18.04 wit following nvidia card:
±----------------------------------------------------------------------------+
| NVIDIA-SMI 440.82 Driver Version: 440.82 CUDA Version: 10.2 |
|-------------------------------±---------------------±---------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce RTX 2070 Off | 00000000:01:00.0 Off | N/A |
| 29% 40C P2 39W / 175W | 748MiB / 7981MiB | 0% Default |
±------------------------------±---------------------±---------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+

Thanks for checking and let me know whats the problem here.

Dear Morganh,

tried again the detectnet_v2 training with kitti dataset, without changing config or something and get now following error? Why TLT is so buggy? You write on your website it’s working “out of the box”… i think this is not right and very frustrating.

Using TensorFlow backend.
2020-06-15 05:17:14,629 [INFO] iva.detectnet_v2.scripts.train: Loading experiment spec at /workspace/examples/detectnet_v2/specs/detectnet_v2_train_resnet18_kitti.txt.
2020-06-15 05:17:14,630 [INFO] iva.detectnet_v2.spec_handler.spec_loader: Merging specification from /workspace/examples/detectnet_v2/specs/detectnet_v2_train_resnet18_kitti.txt
2020-06-15 05:17:14,763 [INFO] iva.detectnet_v2.scripts.train: Cannot iterate over exactly 6434 samples with a batch size of 4; each epoch will therefore take one extra step.
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            (None, 3, 384, 1248) 0                                            
__________________________________________________________________________________________________
conv1 (Conv2D)                  (None, 64, 192, 624) 9472        input_1[0][0]                    
__________________________________________________________________________________________________
bn_conv1 (BatchNormalization)   (None, 64, 192, 624) 256         conv1[0][0]                      
__________________________________________________________________________________________________
activation_1 (Activation)       (None, 64, 192, 624) 0           bn_conv1[0][0]                   
__________________________________________________________________________________________________
block_1a_conv_1 (Conv2D)        (None, 64, 96, 312)  36928       activation_1[0][0]               
__________________________________________________________________________________________________
block_1a_bn_1 (BatchNormalizati (None, 64, 96, 312)  256         block_1a_conv_1[0][0]            
__________________________________________________________________________________________________
block_1a_relu_1 (Activation)    (None, 64, 96, 312)  0           block_1a_bn_1[0][0]              
__________________________________________________________________________________________________
block_1a_conv_2 (Conv2D)        (None, 64, 96, 312)  36928       block_1a_relu_1[0][0]            
__________________________________________________________________________________________________
block_1a_conv_shortcut (Conv2D) (None, 64, 96, 312)  4160        activation_1[0][0]               
__________________________________________________________________________________________________
block_1a_bn_2 (BatchNormalizati (None, 64, 96, 312)  256         block_1a_conv_2[0][0]            
__________________________________________________________________________________________________
block_1a_bn_shortcut (BatchNorm (None, 64, 96, 312)  256         block_1a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_1 (Add)                     (None, 64, 96, 312)  0           block_1a_bn_2[0][0]              
                                                                 block_1a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_1a_relu (Activation)      (None, 64, 96, 312)  0           add_1[0][0]                      
__________________________________________________________________________________________________
block_1b_conv_1 (Conv2D)        (None, 64, 96, 312)  36928       block_1a_relu[0][0]              
__________________________________________________________________________________________________
block_1b_bn_1 (BatchNormalizati (None, 64, 96, 312)  256         block_1b_conv_1[0][0]            
__________________________________________________________________________________________________
block_1b_relu_1 (Activation)    (None, 64, 96, 312)  0           block_1b_bn_1[0][0]              
__________________________________________________________________________________________________
block_1b_conv_2 (Conv2D)        (None, 64, 96, 312)  36928       block_1b_relu_1[0][0]            
__________________________________________________________________________________________________
block_1b_bn_2 (BatchNormalizati (None, 64, 96, 312)  256         block_1b_conv_2[0][0]            
__________________________________________________________________________________________________
add_2 (Add)                     (None, 64, 96, 312)  0           block_1b_bn_2[0][0]              
                                                                 block_1a_relu[0][0]              
__________________________________________________________________________________________________
block_1b_relu (Activation)      (None, 64, 96, 312)  0           add_2[0][0]                      
__________________________________________________________________________________________________
block_2a_conv_1 (Conv2D)        (None, 128, 48, 156) 73856       block_1b_relu[0][0]              
__________________________________________________________________________________________________
block_2a_bn_1 (BatchNormalizati (None, 128, 48, 156) 512         block_2a_conv_1[0][0]            
__________________________________________________________________________________________________
block_2a_relu_1 (Activation)    (None, 128, 48, 156) 0           block_2a_bn_1[0][0]              
__________________________________________________________________________________________________
block_2a_conv_2 (Conv2D)        (None, 128, 48, 156) 147584      block_2a_relu_1[0][0]            
__________________________________________________________________________________________________
block_2a_conv_shortcut (Conv2D) (None, 128, 48, 156) 8320        block_1b_relu[0][0]              
__________________________________________________________________________________________________
block_2a_bn_2 (BatchNormalizati (None, 128, 48, 156) 512         block_2a_conv_2[0][0]            
__________________________________________________________________________________________________
block_2a_bn_shortcut (BatchNorm (None, 128, 48, 156) 512         block_2a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_3 (Add)                     (None, 128, 48, 156) 0           block_2a_bn_2[0][0]              
                                                                 block_2a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_2a_relu (Activation)      (None, 128, 48, 156) 0           add_3[0][0]                      
__________________________________________________________________________________________________
block_2b_conv_1 (Conv2D)        (None, 128, 48, 156) 147584      block_2a_relu[0][0]              
__________________________________________________________________________________________________
block_2b_bn_1 (BatchNormalizati (None, 128, 48, 156) 512         block_2b_conv_1[0][0]            
__________________________________________________________________________________________________
block_2b_relu_1 (Activation)    (None, 128, 48, 156) 0           block_2b_bn_1[0][0]              
__________________________________________________________________________________________________
block_2b_conv_2 (Conv2D)        (None, 128, 48, 156) 147584      block_2b_relu_1[0][0]            
__________________________________________________________________________________________________
block_2b_bn_2 (BatchNormalizati (None, 128, 48, 156) 512         block_2b_conv_2[0][0]            
__________________________________________________________________________________________________
add_4 (Add)                     (None, 128, 48, 156) 0           block_2b_bn_2[0][0]              
                                                                 block_2a_relu[0][0]              
__________________________________________________________________________________________________
block_2b_relu (Activation)      (None, 128, 48, 156) 0           add_4[0][0]                      
__________________________________________________________________________________________________
block_3a_conv_1 (Conv2D)        (None, 256, 24, 78)  295168      block_2b_relu[0][0]              
__________________________________________________________________________________________________
block_3a_bn_1 (BatchNormalizati (None, 256, 24, 78)  1024        block_3a_conv_1[0][0]            
__________________________________________________________________________________________________
block_3a_relu_1 (Activation)    (None, 256, 24, 78)  0           block_3a_bn_1[0][0]              
__________________________________________________________________________________________________
block_3a_conv_2 (Conv2D)        (None, 256, 24, 78)  590080      block_3a_relu_1[0][0]            
__________________________________________________________________________________________________
block_3a_conv_shortcut (Conv2D) (None, 256, 24, 78)  33024       block_2b_relu[0][0]              
__________________________________________________________________________________________________
block_3a_bn_2 (BatchNormalizati (None, 256, 24, 78)  1024        block_3a_conv_2[0][0]            
__________________________________________________________________________________________________
block_3a_bn_shortcut (BatchNorm (None, 256, 24, 78)  1024        block_3a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_5 (Add)                     (None, 256, 24, 78)  0           block_3a_bn_2[0][0]              
                                                                 block_3a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_3a_relu (Activation)      (None, 256, 24, 78)  0           add_5[0][0]                      
__________________________________________________________________________________________________
block_3b_conv_1 (Conv2D)        (None, 256, 24, 78)  590080      block_3a_relu[0][0]              
__________________________________________________________________________________________________
block_3b_bn_1 (BatchNormalizati (None, 256, 24, 78)  1024        block_3b_conv_1[0][0]            
__________________________________________________________________________________________________
block_3b_relu_1 (Activation)    (None, 256, 24, 78)  0           block_3b_bn_1[0][0]              
__________________________________________________________________________________________________
block_3b_conv_2 (Conv2D)        (None, 256, 24, 78)  590080      block_3b_relu_1[0][0]            
__________________________________________________________________________________________________
block_3b_bn_2 (BatchNormalizati (None, 256, 24, 78)  1024        block_3b_conv_2[0][0]            
__________________________________________________________________________________________________
add_6 (Add)                     (None, 256, 24, 78)  0           block_3b_bn_2[0][0]              
                                                                 block_3a_relu[0][0]              
__________________________________________________________________________________________________
block_3b_relu (Activation)      (None, 256, 24, 78)  0           add_6[0][0]                      
__________________________________________________________________________________________________
block_4a_conv_1 (Conv2D)        (None, 512, 24, 78)  1180160     block_3b_relu[0][0]              
__________________________________________________________________________________________________
block_4a_bn_1 (BatchNormalizati (None, 512, 24, 78)  2048        block_4a_conv_1[0][0]            
__________________________________________________________________________________________________
block_4a_relu_1 (Activation)    (None, 512, 24, 78)  0           block_4a_bn_1[0][0]              
__________________________________________________________________________________________________
block_4a_conv_2 (Conv2D)        (None, 512, 24, 78)  2359808     block_4a_relu_1[0][0]            
__________________________________________________________________________________________________
block_4a_conv_shortcut (Conv2D) (None, 512, 24, 78)  131584      block_3b_relu[0][0]              
__________________________________________________________________________________________________
block_4a_bn_2 (BatchNormalizati (None, 512, 24, 78)  2048        block_4a_conv_2[0][0]            
__________________________________________________________________________________________________
block_4a_bn_shortcut (BatchNorm (None, 512, 24, 78)  2048        block_4a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_7 (Add)                     (None, 512, 24, 78)  0           block_4a_bn_2[0][0]              
                                                                 block_4a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_4a_relu (Activation)      (None, 512, 24, 78)  0           add_7[0][0]                      
__________________________________________________________________________________________________
block_4b_conv_1 (Conv2D)        (None, 512, 24, 78)  2359808     block_4a_relu[0][0]              
__________________________________________________________________________________________________
block_4b_bn_1 (BatchNormalizati (None, 512, 24, 78)  2048        block_4b_conv_1[0][0]            
__________________________________________________________________________________________________
block_4b_relu_1 (Activation)    (None, 512, 24, 78)  0           block_4b_bn_1[0][0]              
__________________________________________________________________________________________________
block_4b_conv_2 (Conv2D)        (None, 512, 24, 78)  2359808     block_4b_relu_1[0][0]            
__________________________________________________________________________________________________
block_4b_bn_2 (BatchNormalizati (None, 512, 24, 78)  2048        block_4b_conv_2[0][0]            
__________________________________________________________________________________________________
add_8 (Add)                     (None, 512, 24, 78)  0           block_4b_bn_2[0][0]              
                                                                 block_4a_relu[0][0]              
__________________________________________________________________________________________________
block_4b_relu (Activation)      (None, 512, 24, 78)  0           add_8[0][0]                      
__________________________________________________________________________________________________
output_bbox (Conv2D)            (None, 12, 24, 78)   6156        block_4b_relu[0][0]              
__________________________________________________________________________________________________
output_cov (Conv2D)             (None, 3, 24, 78)    1539        block_4b_relu[0][0]              
==================================================================================================
Total params: 11,203,023
Trainable params: 11,193,295
Non-trainable params: 9,728
__________________________________________________________________________________________________

target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
2020-06-15 05:17:29,003 [INFO] iva.detectnet_v2.scripts.train: Found 6434 samples in training set
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
2020-06-15 05:17:36,291 [INFO] iva.detectnet_v2.scripts.train: Found 1047 samples in validation set
Traceback (most recent call last):
  File "/usr/local/bin/tlt-train-g1", line 8, in <module>
    sys.exit(main())
  File "./common/magnet_train.py", line 47, in main
  File "<decorator-gen-2>", line 2, in main
  File "./detectnet_v2/utilities/timer.py", line 46, in wrapped_fn
  File "./detectnet_v2/scripts/train.py", line 667, in main
  File "./detectnet_v2/scripts/train.py", line 591, in run_experiment
  File "./detectnet_v2/scripts/train.py", line 525, in train_gridbox
  File "./detectnet_v2/scripts/train.py", line 142, in run_training_loop
  File "./detectnet_v2/training/utilities.py", line 143, in get_singular_monitored_session
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/monitored_session.py", line 1021, in __init__
    stop_grace_period_secs=stop_grace_period_secs)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/monitored_session.py", line 650, in __init__
    self._sess = self._coordinated_creator.create_session()
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/monitored_session.py", line 805, in create_session
    self.tf_sess = self._session_creator.create_session()
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/monitored_session.py", line 571, in create_session
    init_fn=self._scaffold.init_fn)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/session_manager.py", line 281, in prepare_session
    config=config)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/session_manager.py", line 195, in _restore_checkpoint
    saver.restore(sess, checkpoint_filename_with_path)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 1292, in restore
    err, "a Variable name or other graph key that is missing")
tensorflow.python.framework.errors_impl.NotFoundError: Restoring from checkpoint failed. This is most likely due to a Variable name or other graph key that is missing from the checkpoint. Please ensure that you have not altered the graph expected based on the checkpoint. Original error:

Key cost_sums/car-bbox not found in checkpoint
	 [[node save/RestoreV2 (defined at ./detectnet_v2/training/utilities.py:143) ]]

Caused by op u'save/RestoreV2', defined at:
  File "/usr/local/bin/tlt-train-g1", line 8, in <module>
    sys.exit(main())
  File "./common/magnet_train.py", line 47, in main
  File "<decorator-gen-2>", line 2, in main
  File "./detectnet_v2/utilities/timer.py", line 46, in wrapped_fn
  File "./detectnet_v2/scripts/train.py", line 667, in main
  File "./detectnet_v2/scripts/train.py", line 591, in run_experiment
  File "./detectnet_v2/scripts/train.py", line 525, in train_gridbox
  File "./detectnet_v2/scripts/train.py", line 142, in run_training_loop
  File "./detectnet_v2/training/utilities.py", line 143, in get_singular_monitored_session
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/monitored_session.py", line 1021, in __init__
    stop_grace_period_secs=stop_grace_period_secs)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/monitored_session.py", line 650, in __init__
    self._sess = self._coordinated_creator.create_session()
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/monitored_session.py", line 805, in create_session
    self.tf_sess = self._session_creator.create_session()
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/monitored_session.py", line 562, in create_session
    self._scaffold.finalize()
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/monitored_session.py", line 217, in finalize
    self._saver = training_saver._get_saver_or_default()  # pylint: disable=protected-access
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 604, in _get_saver_or_default
    saver = Saver(sharded=True, allow_empty=True)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 832, in __init__
    self.build()
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 844, in build
    self._build(self._filename, build_save=True, build_restore=True)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 881, in _build
    build_save=build_save, build_restore=build_restore)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 507, in _build_internal
    restore_sequentially, reshape)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 385, in _AddShardedRestoreOps
    name="restore_shard"))
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 332, in _AddRestoreOps
    restore_sequentially)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 580, in bulk_restore
    return io_ops.restore_v2(filename_tensor, names, slices, dtypes)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_io_ops.py", line 1572, in restore_v2
    name=name)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 788, in _apply_op_helper
    op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/util/deprecation.py", line 507, in new_func
    return func(*args, **kwargs)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 3300, in create_op
    op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1801, in __init__
    self._traceback = tf_stack.extract_stack()

NotFoundError (see above for traceback): Restoring from checkpoint failed. This is most likely due to a Variable name or other graph key that is missing from the checkpoint. Please ensure that you have not altered the graph expected based on the checkpoint. Original error:

Key cost_sums/car-bbox not found in checkpoint
	 [[node save/RestoreV2 (defined at ./detectnet_v2/training/utilities.py:143) ]]
  1. Firstly, please ignore the warning

target/truncation is not updated to match the crop areaif the dataset contains target/truncation.

  1. For your latest error, please delete the result folder and trigger training again.
  2. What’s your cpu info?
  3. For " Illegal instruction", see Illegal instruction too.

Hi Morganh,

i cleaned everything and start again the “default” kitti-dataset training and ended up again with illegal instruction error.

Using TensorFlow backend.
2020-06-15 15:46:52,127 [INFO] iva.detectnet_v2.scripts.train: Loading experiment spec at /workspace/examples/detectnet_v2/specs/detectnet_v2_train_resnet18_kitti.txt.
2020-06-15 15:46:52,128 [INFO] iva.detectnet_v2.spec_handler.spec_loader: Merging specification from /workspace/examples/detectnet_v2/specs/detectnet_v2_train_resnet18_kitti.txt
2020-06-15 15:46:52,258 [INFO] iva.detectnet_v2.scripts.train: Cannot iterate over exactly 6434 samples with a batch size of 4; each epoch will therefore take one extra step.
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            (None, 3, 384, 1248) 0                                            
__________________________________________________________________________________________________
conv1 (Conv2D)                  (None, 64, 192, 624) 9472        input_1[0][0]                    
__________________________________________________________________________________________________
bn_conv1 (BatchNormalization)   (None, 64, 192, 624) 256         conv1[0][0]                      
__________________________________________________________________________________________________
activation_1 (Activation)       (None, 64, 192, 624) 0           bn_conv1[0][0]                   
__________________________________________________________________________________________________
block_1a_conv_1 (Conv2D)        (None, 64, 96, 312)  36928       activation_1[0][0]               
__________________________________________________________________________________________________
block_1a_bn_1 (BatchNormalizati (None, 64, 96, 312)  256         block_1a_conv_1[0][0]            
__________________________________________________________________________________________________
block_1a_relu_1 (Activation)    (None, 64, 96, 312)  0           block_1a_bn_1[0][0]              
__________________________________________________________________________________________________
block_1a_conv_2 (Conv2D)        (None, 64, 96, 312)  36928       block_1a_relu_1[0][0]            
__________________________________________________________________________________________________
block_1a_conv_shortcut (Conv2D) (None, 64, 96, 312)  4160        activation_1[0][0]               
__________________________________________________________________________________________________
block_1a_bn_2 (BatchNormalizati (None, 64, 96, 312)  256         block_1a_conv_2[0][0]            
__________________________________________________________________________________________________
block_1a_bn_shortcut (BatchNorm (None, 64, 96, 312)  256         block_1a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_1 (Add)                     (None, 64, 96, 312)  0           block_1a_bn_2[0][0]              
                                                                 block_1a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_1a_relu (Activation)      (None, 64, 96, 312)  0           add_1[0][0]                      
__________________________________________________________________________________________________
block_1b_conv_1 (Conv2D)        (None, 64, 96, 312)  36928       block_1a_relu[0][0]              
__________________________________________________________________________________________________
block_1b_bn_1 (BatchNormalizati (None, 64, 96, 312)  256         block_1b_conv_1[0][0]            
__________________________________________________________________________________________________
block_1b_relu_1 (Activation)    (None, 64, 96, 312)  0           block_1b_bn_1[0][0]              
__________________________________________________________________________________________________
block_1b_conv_2 (Conv2D)        (None, 64, 96, 312)  36928       block_1b_relu_1[0][0]            
__________________________________________________________________________________________________
block_1b_bn_2 (BatchNormalizati (None, 64, 96, 312)  256         block_1b_conv_2[0][0]            
__________________________________________________________________________________________________
add_2 (Add)                     (None, 64, 96, 312)  0           block_1b_bn_2[0][0]              
                                                                 block_1a_relu[0][0]              
__________________________________________________________________________________________________
block_1b_relu (Activation)      (None, 64, 96, 312)  0           add_2[0][0]                      
__________________________________________________________________________________________________
block_2a_conv_1 (Conv2D)        (None, 128, 48, 156) 73856       block_1b_relu[0][0]              
__________________________________________________________________________________________________
block_2a_bn_1 (BatchNormalizati (None, 128, 48, 156) 512         block_2a_conv_1[0][0]            
__________________________________________________________________________________________________
block_2a_relu_1 (Activation)    (None, 128, 48, 156) 0           block_2a_bn_1[0][0]              
__________________________________________________________________________________________________
block_2a_conv_2 (Conv2D)        (None, 128, 48, 156) 147584      block_2a_relu_1[0][0]            
__________________________________________________________________________________________________
block_2a_conv_shortcut (Conv2D) (None, 128, 48, 156) 8320        block_1b_relu[0][0]              
__________________________________________________________________________________________________
block_2a_bn_2 (BatchNormalizati (None, 128, 48, 156) 512         block_2a_conv_2[0][0]            
__________________________________________________________________________________________________
block_2a_bn_shortcut (BatchNorm (None, 128, 48, 156) 512         block_2a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_3 (Add)                     (None, 128, 48, 156) 0           block_2a_bn_2[0][0]              
                                                                 block_2a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_2a_relu (Activation)      (None, 128, 48, 156) 0           add_3[0][0]                      
__________________________________________________________________________________________________
block_2b_conv_1 (Conv2D)        (None, 128, 48, 156) 147584      block_2a_relu[0][0]              
__________________________________________________________________________________________________
block_2b_bn_1 (BatchNormalizati (None, 128, 48, 156) 512         block_2b_conv_1[0][0]            
__________________________________________________________________________________________________
block_2b_relu_1 (Activation)    (None, 128, 48, 156) 0           block_2b_bn_1[0][0]              
__________________________________________________________________________________________________
block_2b_conv_2 (Conv2D)        (None, 128, 48, 156) 147584      block_2b_relu_1[0][0]            
__________________________________________________________________________________________________
block_2b_bn_2 (BatchNormalizati (None, 128, 48, 156) 512         block_2b_conv_2[0][0]            
__________________________________________________________________________________________________
add_4 (Add)                     (None, 128, 48, 156) 0           block_2b_bn_2[0][0]              
                                                                 block_2a_relu[0][0]              
__________________________________________________________________________________________________
block_2b_relu (Activation)      (None, 128, 48, 156) 0           add_4[0][0]                      
__________________________________________________________________________________________________
block_3a_conv_1 (Conv2D)        (None, 256, 24, 78)  295168      block_2b_relu[0][0]              
__________________________________________________________________________________________________
block_3a_bn_1 (BatchNormalizati (None, 256, 24, 78)  1024        block_3a_conv_1[0][0]            
__________________________________________________________________________________________________
block_3a_relu_1 (Activation)    (None, 256, 24, 78)  0           block_3a_bn_1[0][0]              
__________________________________________________________________________________________________
block_3a_conv_2 (Conv2D)        (None, 256, 24, 78)  590080      block_3a_relu_1[0][0]            
__________________________________________________________________________________________________
block_3a_conv_shortcut (Conv2D) (None, 256, 24, 78)  33024       block_2b_relu[0][0]              
__________________________________________________________________________________________________
block_3a_bn_2 (BatchNormalizati (None, 256, 24, 78)  1024        block_3a_conv_2[0][0]            
__________________________________________________________________________________________________
block_3a_bn_shortcut (BatchNorm (None, 256, 24, 78)  1024        block_3a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_5 (Add)                     (None, 256, 24, 78)  0           block_3a_bn_2[0][0]              
                                                                 block_3a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_3a_relu (Activation)      (None, 256, 24, 78)  0           add_5[0][0]                      
__________________________________________________________________________________________________
block_3b_conv_1 (Conv2D)        (None, 256, 24, 78)  590080      block_3a_relu[0][0]              
__________________________________________________________________________________________________
block_3b_bn_1 (BatchNormalizati (None, 256, 24, 78)  1024        block_3b_conv_1[0][0]            
__________________________________________________________________________________________________
block_3b_relu_1 (Activation)    (None, 256, 24, 78)  0           block_3b_bn_1[0][0]              
__________________________________________________________________________________________________
block_3b_conv_2 (Conv2D)        (None, 256, 24, 78)  590080      block_3b_relu_1[0][0]            
__________________________________________________________________________________________________
block_3b_bn_2 (BatchNormalizati (None, 256, 24, 78)  1024        block_3b_conv_2[0][0]            
__________________________________________________________________________________________________
add_6 (Add)                     (None, 256, 24, 78)  0           block_3b_bn_2[0][0]              
                                                                 block_3a_relu[0][0]              
__________________________________________________________________________________________________
block_3b_relu (Activation)      (None, 256, 24, 78)  0           add_6[0][0]                      
__________________________________________________________________________________________________
block_4a_conv_1 (Conv2D)        (None, 512, 24, 78)  1180160     block_3b_relu[0][0]              
__________________________________________________________________________________________________
block_4a_bn_1 (BatchNormalizati (None, 512, 24, 78)  2048        block_4a_conv_1[0][0]            
__________________________________________________________________________________________________
block_4a_relu_1 (Activation)    (None, 512, 24, 78)  0           block_4a_bn_1[0][0]              
__________________________________________________________________________________________________
block_4a_conv_2 (Conv2D)        (None, 512, 24, 78)  2359808     block_4a_relu_1[0][0]            
__________________________________________________________________________________________________
block_4a_conv_shortcut (Conv2D) (None, 512, 24, 78)  131584      block_3b_relu[0][0]              
__________________________________________________________________________________________________
block_4a_bn_2 (BatchNormalizati (None, 512, 24, 78)  2048        block_4a_conv_2[0][0]            
__________________________________________________________________________________________________
block_4a_bn_shortcut (BatchNorm (None, 512, 24, 78)  2048        block_4a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_7 (Add)                     (None, 512, 24, 78)  0           block_4a_bn_2[0][0]              
                                                                 block_4a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_4a_relu (Activation)      (None, 512, 24, 78)  0           add_7[0][0]                      
__________________________________________________________________________________________________
block_4b_conv_1 (Conv2D)        (None, 512, 24, 78)  2359808     block_4a_relu[0][0]              
__________________________________________________________________________________________________
block_4b_bn_1 (BatchNormalizati (None, 512, 24, 78)  2048        block_4b_conv_1[0][0]            
__________________________________________________________________________________________________
block_4b_relu_1 (Activation)    (None, 512, 24, 78)  0           block_4b_bn_1[0][0]              
__________________________________________________________________________________________________
block_4b_conv_2 (Conv2D)        (None, 512, 24, 78)  2359808     block_4b_relu_1[0][0]            
__________________________________________________________________________________________________
block_4b_bn_2 (BatchNormalizati (None, 512, 24, 78)  2048        block_4b_conv_2[0][0]            
__________________________________________________________________________________________________
add_8 (Add)                     (None, 512, 24, 78)  0           block_4b_bn_2[0][0]              
                                                                 block_4a_relu[0][0]              
__________________________________________________________________________________________________
block_4b_relu (Activation)      (None, 512, 24, 78)  0           add_8[0][0]                      
__________________________________________________________________________________________________
output_bbox (Conv2D)            (None, 12, 24, 78)   6156        block_4b_relu[0][0]              
__________________________________________________________________________________________________
output_cov (Conv2D)             (None, 3, 24, 78)    1539        block_4b_relu[0][0]              
==================================================================================================
Total params: 11,203,023
Trainable params: 11,193,295
Non-trainable params: 9,728
__________________________________________________________________________________________________

target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
2020-06-15 15:47:05,947 [INFO] iva.detectnet_v2.scripts.train: Found 6434 samples in training set
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
target/truncation is not updated to match the crop areaif the dataset contains target/truncation.
2020-06-15 15:47:13,001 [INFO] iva.detectnet_v2.scripts.train: Found 1047 samples in validation set
/usr/local/bin/tlt-train: line 32:  1800 Illegal instruction     (core dumped) tlt-train-g1 ${PYTHON_ARGS[*]}

I of course checked the other thread “Illegal instruction” but how explained, TF is running without problems.

CPU:

Architecture:        x86_64
CPU op-mode(s):      32-bit, 64-bit
Byte Order:          Little Endian
CPU(s):              8
On-line CPU(s) list: 0-7
Thread(s) per core:  2
Core(s) per socket:  4
Socket(s):           1
NUMA node(s):        1
Vendor ID:           GenuineIntel
CPU family:          6
Model:               42
Model name:          Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
Stepping:            7
CPU MHz:             3065.607
CPU max MHz:         3800.0000
CPU min MHz:         1600.0000
BogoMIPS:            6806.48
Virtualization:      VT-x
L1d cache:           32K
L1i cache:           32K
L2 cache:            256K
L3 cache:            8192K
NUMA node0 CPU(s):   0-7

i will try later on a other PC, but is this error really because of my CPU and what i can do against it?

It may be related to missing some instruction of cpu.
See Core dumped on examples - #4 by nikki_dzhurov too.

Hi Morganh,

okay my CPU is missing AVX2, on other machine with AVX2 no errors happen.

Given a solution to use TLT on a CPU with only AVX? Or the only solution is to buy new CPU?

btw. for other, example how to check AVX2 SUPPORTED by CPU:

root@ai:~# grep avx /proc/cpuinfo

`flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer aes xsave **avx** lahf_lm epb pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid xsaveopt dtherm ida arat pln pts md_clear flush_l1d`

if you dont get any results for:
root@ai:~# grep avx2 /proc/cpuinfo

Than your CPU not supporting AVX2

Suggest to use cpu which supports AVX2. The i7-2600 may be a little old.