C:\Users\Kerem>nvidia-smi
Thu Feb 18 14:27:33 2021
±----------------------------------------------------------------------------+
| NVIDIA-SMI 442.23 Driver Version: 442.23 CUDA Version: 10.2 |
|-------------------------------±---------------------±---------------------+
| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 165… WDDM | 00000000:01:00.0 Off | N/A |
| N/A 36C P8 5W / N/A | 134MiB / 4096MiB | 0% Default |
±------------------------------±---------------------±---------------------+
±----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| No running processes found |
±----------------------------------------------------------------------------+
WARNING: infoROM is corrupted at gpu 0000:01:00.0
(gputens) C:\Users\Kerem>nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Wed_Jul_22_19:09:35_Pacific_Daylight_Time_2020
Cuda compilation tools, release 11.0, V11.0.221
Build cuda_11.0_bu.relgpu_drvr445TC445_37.28845127_0
I downloaded CUDA 11.0 and cudNN 8.0 for tensorflow-gpu. My gpu is Geforce GTX 1650 TI.
And when I run this command on jupyter
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
I get this error:
RuntimeError: cudaGetDevice() failed. Status: CUDA driver version is insufficient for CUDA runtime version