Hello,
Here is my setup keypoints:
-
CUDA: version 10.2
-
cuDNN: version 7.6
-
NVIDIA driver: version 440
-
TensorFlow: version 2.0
When I check my GPU from TensorFlow, I get this:
import tensorflow as tf
tf.test.is_gpu_available()
2020-03-16 13:50:11.216347: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2020-03-16 13:50:11.279329: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2299965000 Hz
2020-03-16 13:50:11.280490: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x4a0dea0 executing computations on platform Host. Devices:
2020-03-16 13:50:11.280547: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): Host, Default Version
2020-03-16 13:50:11.286390: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2020-03-16 13:50:11.381738: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1006] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-03-16 13:50:11.382114: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x4a9d180 executing computations on platform CUDA. Devices:
2020-03-16 13:50:11.382136: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): GeForce GTX 1050, Compute Capability 6.1
2020-03-16 13:50:11.382311: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1006] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-03-16 13:50:11.382557: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce GTX 1050 major: 6 minor: 1 memoryClockRate(GHz): 1.493
pciBusID: 0000:01:00.0
2020-03-16 13:50:11.382686: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library ‘libcudart.so.10.0’; dlerror: libcudart.so.10.0: cannot open shared object file: No such file or directory
2020-03-16 13:50:11.382791: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library ‘libcublas.so.10.0’; dlerror: libcublas.so.10.0: cannot open shared object file: No such file or directory
2020-03-16 13:50:11.382877: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library ‘libcufft.so.10.0’; dlerror: libcufft.so.10.0: cannot open shared object file: No such file or directory
2020-03-16 13:50:11.382958: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library ‘libcurand.so.10.0’; dlerror: libcurand.so.10.0: cannot open shared object file: No such file or directory
2020-03-16 13:50:11.383037: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library ‘libcusolver.so.10.0’; dlerror: libcusolver.so.10.0: cannot open shared object file: No such file or directory
2020-03-16 13:50:11.383115: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library ‘libcusparse.so.10.0’; dlerror: libcusparse.so.10.0: cannot open shared object file: No such file or directory
2020-03-16 13:50:11.439296: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-03-16 13:50:11.439360: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1641] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at Install TensorFlow with pip for how to download and setup the required libraries for your platform.
Skipping registering GPU devices…
2020-03-16 13:50:11.439396: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-03-16 13:50:11.439415: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2020-03-16 13:50:11.439430: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
False
Thanks in advance for any suggestion.