I am losing detections on the nvdsinfer_custom_impl_Yolo by GitHub - marcoslucianops/DeepStream-Yolo: NVIDIA DeepStream SDK 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 / 5.1 implementation for YOLO models after 5 streams , but when i run the same yolov4 darknet models to convert to trt it works in this repo upto 16 GitHub - jkjung-avt/tensorrt_demos: TensorRT MODNet, YOLOv4, YOLOv3, SSD, MTCNN, and GoogLeNet for 12gb GPU
Deepstream version 6.2
Yolo V 4
Cuda 12.2
Runtime 11.8
Ubuntu 20.4
Gststreamer 1.16.0
This my yolo layers
Loading pre-trained weights
Loading weights of yolo-obj_best complete
Total weights read: 64003990
Building YOLO network
Layer Input Shape Output Shape WeightPtr
(0) conv_mish [3, 608, 608] [32, 608, 608] 992
(1) conv_mish [32, 608, 608] [64, 304, 304] 19680
(2) conv_mish [64, 304, 304] [64, 304, 304] 24032
(3) route: 1 - [64, 304, 304] -
(4) conv_mish [64, 304, 304] [64, 304, 304] 28384
(5) conv_mish [64, 304, 304] [32, 304, 304] 30560
(6) conv_mish [32, 304, 304] [64, 304, 304] 49248
(7) shortcut_linear: 4 [64, 304, 304] [64, 304, 304] -
(8) conv_mish [64, 304, 304] [64, 304, 304] 53600
(9) route: 8, 2 - [128, 304, 304] -
(10) conv_mish [128, 304, 304] [64, 304, 304] 62048
(11) conv_mish [64, 304, 304] [128, 152, 152] 136288
(12) conv_mish [128, 152, 152] [64, 152, 152] 144736
(13) route: 11 - [128, 152, 152] -
(14) conv_mish [128, 152, 152] [64, 152, 152] 153184
(15) conv_mish [64, 152, 152] [64, 152, 152] 157536
(16) conv_mish [64, 152, 152] [64, 152, 152] 194656
(17) shortcut_linear: 14 [64, 152, 152] [64, 152, 152] -
(18) conv_mish [64, 152, 152] [64, 152, 152] 199008
(19) conv_mish [64, 152, 152] [64, 152, 152] 236128
(20) shortcut_linear: 17 [64, 152, 152] [64, 152, 152] -
(21) conv_mish [64, 152, 152] [64, 152, 152] 240480
(22) route: 21, 12 - [128, 152, 152] -
(23) conv_mish [128, 152, 152] [128, 152, 152] 257376
(24) conv_mish [128, 152, 152] [256, 76, 76] 553312
(25) conv_mish [256, 76, 76] [128, 76, 76] 586592
(26) route: 24 - [256, 76, 76] -
(27) conv_mish [256, 76, 76] [128, 76, 76] 619872
(28) conv_mish [128, 76, 76] [128, 76, 76] 636768
(29) conv_mish [128, 76, 76] [128, 76, 76] 784736
(30) shortcut_linear: 27 [128, 76, 76] [128, 76, 76] -
(31) conv_mish [128, 76, 76] [128, 76, 76] 801632
(32) conv_mish [128, 76, 76] [128, 76, 76] 949600
(33) shortcut_linear: 30 [128, 76, 76] [128, 76, 76] -
(34) conv_mish [128, 76, 76] [128, 76, 76] 966496
(35) conv_mish [128, 76, 76] [128, 76, 76] 1114464
(36) shortcut_linear: 33 [128, 76, 76] [128, 76, 76] -
(37) conv_mish [128, 76, 76] [128, 76, 76] 1131360
(38) conv_mish [128, 76, 76] [128, 76, 76] 1279328
(39) shortcut_linear: 36 [128, 76, 76] [128, 76, 76] -
(40) conv_mish [128, 76, 76] [128, 76, 76] 1296224
(41) conv_mish [128, 76, 76] [128, 76, 76] 1444192
(42) shortcut_linear: 39 [128, 76, 76] [128, 76, 76] -
(43) conv_mish [128, 76, 76] [128, 76, 76] 1461088
(44) conv_mish [128, 76, 76] [128, 76, 76] 1609056
(45) shortcut_linear: 42 [128, 76, 76] [128, 76, 76] -
(46) conv_mish [128, 76, 76] [128, 76, 76] 1625952
(47) conv_mish [128, 76, 76] [128, 76, 76] 1773920
(48) shortcut_linear: 45 [128, 76, 76] [128, 76, 76] -
(49) conv_mish [128, 76, 76] [128, 76, 76] 1790816
(50) conv_mish [128, 76, 76] [128, 76, 76] 1938784
(51) shortcut_linear: 48 [128, 76, 76] [128, 76, 76] -
(52) conv_mish [128, 76, 76] [128, 76, 76] 1955680
(53) route: 52, 25 - [256, 76, 76] -
(54) conv_mish [256, 76, 76] [256, 76, 76] 2022240
(55) conv_mish [256, 76, 76] [512, 38, 38] 3203936
(56) conv_mish [512, 38, 38] [256, 38, 38] 3336032
(57) route: 55 - [512, 38, 38] -
(58) conv_mish [512, 38, 38] [256, 38, 38] 3468128
(59) conv_mish [256, 38, 38] [256, 38, 38] 3534688
(60) conv_mish [256, 38, 38] [256, 38, 38] 4125536
(61) shortcut_linear: 58 [256, 38, 38] [256, 38, 38] -
(62) conv_mish [256, 38, 38] [256, 38, 38] 4192096
(63) conv_mish [256, 38, 38] [256, 38, 38] 4782944
(64) shortcut_linear: 61 [256, 38, 38] [256, 38, 38] -
(65) conv_mish [256, 38, 38] [256, 38, 38] 4849504
(66) conv_mish [256, 38, 38] [256, 38, 38] 5440352
(67) shortcut_linear: 64 [256, 38, 38] [256, 38, 38] -
(68) conv_mish [256, 38, 38] [256, 38, 38] 5506912
(69) conv_mish [256, 38, 38] [256, 38, 38] 6097760
(70) shortcut_linear: 67 [256, 38, 38] [256, 38, 38] -
(71) conv_mish [256, 38, 38] [256, 38, 38] 6164320
(72) conv_mish [256, 38, 38] [256, 38, 38] 6755168
(73) shortcut_linear: 70 [256, 38, 38] [256, 38, 38] -
(74) conv_mish [256, 38, 38] [256, 38, 38] 6821728
(75) conv_mish [256, 38, 38] [256, 38, 38] 7412576
(76) shortcut_linear: 73 [256, 38, 38] [256, 38, 38] -
(77) conv_mish [256, 38, 38] [256, 38, 38] 7479136
(78) conv_mish [256, 38, 38] [256, 38, 38] 8069984
(79) shortcut_linear: 76 [256, 38, 38] [256, 38, 38] -
(80) conv_mish [256, 38, 38] [256, 38, 38] 8136544
(81) conv_mish [256, 38, 38] [256, 38, 38] 8727392
(82) shortcut_linear: 79 [256, 38, 38] [256, 38, 38] -
(83) conv_mish [256, 38, 38] [256, 38, 38] 8793952
(84) route: 83, 56 - [512, 38, 38] -
(85) conv_mish [512, 38, 38] [512, 38, 38] 9058144
(86) conv_mish [512, 38, 38] [1024, 19, 19] 13780832
(87) conv_mish [1024, 19, 19] [512, 19, 19] 14307168
(88) route: 86 - [1024, 19, 19] -
(89) conv_mish [1024, 19, 19] [512, 19, 19] 14833504
(90) conv_mish [512, 19, 19] [512, 19, 19] 15097696
(91) conv_mish [512, 19, 19] [512, 19, 19] 17459040
(92) shortcut_linear: 89 [512, 19, 19] [512, 19, 19] -
(93) conv_mish [512, 19, 19] [512, 19, 19] 17723232
(94) conv_mish [512, 19, 19] [512, 19, 19] 20084576
(95) shortcut_linear: 92 [512, 19, 19] [512, 19, 19] -
(96) conv_mish [512, 19, 19] [512, 19, 19] 20348768
(97) conv_mish [512, 19, 19] [512, 19, 19] 22710112
(98) shortcut_linear: 95 [512, 19, 19] [512, 19, 19] -
(99) conv_mish [512, 19, 19] [512, 19, 19] 22974304
(100) conv_mish [512, 19, 19] [512, 19, 19] 25335648
(101) shortcut_linear: 98 [512, 19, 19] [512, 19, 19] -
(102) conv_mish [512, 19, 19] [512, 19, 19] 25599840
(103) route: 102, 87 - [1024, 19, 19] -
(104) conv_mish [1024, 19, 19] [1024, 19, 19] 26652512
(105) conv_leaky [1024, 19, 19] [512, 19, 19] 27178848
(106) conv_leaky [512, 19, 19] [1024, 19, 19] 31901536
(107) conv_leaky [1024, 19, 19] [512, 19, 19] 32427872
(108) maxpool [512, 19, 19] [512, 19, 19] -
(109) route: 107 - [512, 19, 19] -
(110) maxpool [512, 19, 19] [512, 19, 19] -
(111) route: 107 - [512, 19, 19] -
(112) maxpool [512, 19, 19] [512, 19, 19] -
(113) route: 112, 110, 108, 107 - [2048, 19, 19] -
(114) conv_leaky [2048, 19, 19] [512, 19, 19] 33478496
(115) conv_leaky [512, 19, 19] [1024, 19, 19] 38201184
(116) conv_leaky [1024, 19, 19] [512, 19, 19] 38727520
(117) conv_leaky [512, 19, 19] [256, 19, 19] 38859616
(118) upsample [256, 19, 19] [256, 38, 38] -
(119) route: 85 - [512, 38, 38] -
(120) conv_leaky [512, 38, 38] [256, 38, 38] 38991712
(121) route: 120, 118 - [512, 38, 38] -
(122) conv_leaky [512, 38, 38] [256, 38, 38] 39123808
(123) conv_leaky [256, 38, 38] [512, 38, 38] 40305504
(124) conv_leaky [512, 38, 38] [256, 38, 38] 40437600
(125) conv_leaky [256, 38, 38] [512, 38, 38] 41619296
(126) conv_leaky [512, 38, 38] [256, 38, 38] 41751392
(127) conv_leaky [256, 38, 38] [128, 38, 38] 41784672
(128) upsample [128, 38, 38] [128, 76, 76] -
(129) route: 54 - [256, 76, 76] -
(130) conv_leaky [256, 76, 76] [128, 76, 76] 41817952
(131) route: 130, 128 - [256, 76, 76] -
(132) conv_leaky [256, 76, 76] [128, 76, 76] 41851232
(133) conv_leaky [128, 76, 76] [256, 76, 76] 42147168
(134) conv_leaky [256, 76, 76] [128, 76, 76] 42180448
(135) conv_leaky [128, 76, 76] [256, 76, 76] 42476384
(136) conv_leaky [256, 76, 76] [128, 76, 76] 42509664
(137) conv_leaky [128, 76, 76] [256, 76, 76] 42805600
(138) conv_linear [256, 76, 76] [18, 76, 76] 42810226
(139) yolo [18, 76, 76] - -
(140) route: 136 - [128, 76, 76] -
(141) conv_leaky [128, 76, 76] [256, 38, 38] 43106162
(142) route: 141, 126 - [512, 38, 38] -
(143) conv_leaky [512, 38, 38] [256, 38, 38] 43238258
(144) conv_leaky [256, 38, 38] [512, 38, 38] 44419954
(145) conv_leaky [512, 38, 38] [256, 38, 38] 44552050
(146) conv_leaky [256, 38, 38] [512, 38, 38] 45733746
(147) conv_leaky [512, 38, 38] [256, 38, 38] 45865842
(148) conv_leaky [256, 38, 38] [512, 38, 38] 47047538
(149) conv_linear [512, 38, 38] [18, 38, 38] 47056772
(150) yolo [18, 38, 38] - -
(151) route: 147 - [256, 38, 38] -
(152) conv_leaky [256, 38, 38] [512, 19, 19] 48238468
(153) route: 152, 116 - [1024, 19, 19] -
(154) conv_leaky [1024, 19, 19] [512, 19, 19] 48764804
(155) conv_leaky [512, 19, 19] [1024, 19, 19] 53487492
(156) conv_leaky [1024, 19, 19] [512, 19, 19] 54013828
(157) conv_leaky [512, 19, 19] [1024, 19, 19] 58736516
(158) conv_leaky [1024, 19, 19] [512, 19, 19] 59262852
(159) conv_leaky [512, 19, 19] [1024, 19, 19] 63985540
(160) conv_linear [1024, 19, 19] [18, 19, 19] 64003990
(161) yolo [18, 19, 19] - -
Output YOLO blob names:
yolo_140
yolo_151
yolo_162
Total number of YOLO layers: 507
This is config_infer_primary.txt
[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
model-color-format=0
custom-network-config=models/yolo-obj.cfg
model-file=models/yolo-obj_best.weights
model-engine-file=model_b5_gpu0_fp32.engine
labelfile-path=labels.txt
batch-size=1
network-mode=0
num-detected-classes=1
interval=0
gie-unique-id=1
process-mode=1
network-type=0
cluster-mode=2
maintain-aspect-ratio=0
symmetric-padding=1
force-implicit-batch-dim=1
parse-bbox-func-name=NvDsInferParseYoloCuda
custom-lib-path=nvdsinfer_custom_impl_Yolo/libnvdsinfer_custom_impl_Yolo.so
engine-create-func-name=NvDsInferYoloCudaEngineGet
[class-attrs-all]
nms-iou-threshold=0.45
pre-cluster-threshold=0.25
nms-iou-threshold=0.3
topk=300
This is my pipeline
Please I am in a hurry could anyone help me asap, i would be greatful for them