I am trying to copy the cropped cv::Mat created from get_converted_mat() and attach it as a object level metadata, as inspired by deepstream_user_metadata_app.c example. Here is what I changed in dsexample.cpp
typedef struct _CustomMeta
{
cv::Mat img;
} CustomMeta;
void *set_metadata_ptr(cv::Mat& newFrame);
static gpointer copy_user_meta(gpointer data, gpointer user_data);
static void release_user_meta(gpointer data, gpointer user_data);
void *set_metadata_ptr(cv::Mat& newFrame)
{
int i = 0;
CustomMeta *user_metadata = (CustomMeta *)g_malloc0(sizeof(CustomMeta));
newFrame.copyTo(user_metadata->img);
newFrame.release();
return (void *)user_metadata;
}
/* copy function set by user. "data" holds a pointer to NvDsUserMeta*/
static gpointer copy_user_meta(gpointer data, gpointer user_data)
{
NvDsUserMeta *user_meta = (NvDsUserMeta *)data;
CustomMeta *src_user_metadata = (CustomMeta *)user_meta->user_meta_data;
CustomMeta *dst_user_metadata = (CustomMeta *)g_malloc0(sizeof(CustomMeta));
memcpy(dst_user_metadata, src_user_metadata, sizeof(CustomMeta));
return (gpointer)dst_user_metadata;
}
/* release function set by user. "data" holds a pointer to NvDsUserMeta*/
static void release_user_meta(gpointer data, gpointer user_data)
{
NvDsUserMeta *user_meta = (NvDsUserMeta *)data;
if(user_meta->user_meta_data) {
g_free(user_meta->user_meta_data);
user_meta->user_meta_data = NULL;
}
}
static cv::Mat
get_converted_mat (GstDsExample * dsexample, NvBufSurface *input_buf, gint idx,
NvOSD_RectParams * crop_rect_params, gdouble & ratio, gint input_width,
gint input_height)
{
NvBufSurfTransform_Error err;
NvBufSurfTransformConfigParams transform_config_params;
NvBufSurfTransformParams transform_params;
NvBufSurfTransformRect src_rect;
NvBufSurfTransformRect dst_rect;
NvBufSurface ip_surf;
cv::Mat in_mat, out_mat;
ip_surf = *input_buf;
ip_surf.numFilled = ip_surf.batchSize = 1;
ip_surf.surfaceList = &(input_buf->surfaceList[idx]);
gint src_left = GST_ROUND_UP_2(crop_rect_params->left);
gint src_top = GST_ROUND_UP_2(crop_rect_params->top);
gint src_width = GST_ROUND_DOWN_2(crop_rect_params->width);
gint src_height = GST_ROUND_DOWN_2(crop_rect_params->height);
//g_print("ltwh = %d %d %d %d \n", src_left, src_top, src_width, src_height);
guint dest_width, dest_height;
dest_width = src_width;
dest_height = src_height;
NvBufSurface *nvbuf;
NvBufSurfaceCreateParams create_params;
create_params.gpuId = dsexample->gpu_id;
create_params.width = dest_width;
create_params.height = dest_height;
create_params.size = 0;
create_params.colorFormat = NVBUF_COLOR_FORMAT_RGBA;
create_params.layout = NVBUF_LAYOUT_PITCH;
#ifdef __aarch64__
create_params.memType = NVBUF_MEM_DEFAULT;
#else
create_params.memType = NVBUF_MEM_CUDA_UNIFIED;
#endif
NvBufSurfaceCreate (&nvbuf, 1, &create_params);
// Configure transform session parameters for the transformation
transform_config_params.compute_mode = NvBufSurfTransformCompute_Default;
transform_config_params.gpu_id = dsexample->gpu_id;
transform_config_params.cuda_stream = dsexample->cuda_stream;
// Set the transform session parameters for the conversions executed in this
// thread.
err = NvBufSurfTransformSetSessionParams (&transform_config_params);
if (err != NvBufSurfTransformError_Success) {
GST_ELEMENT_ERROR (dsexample, STREAM, FAILED,
("NvBufSurfTransformSetSessionParams failed with error %d", err), (NULL));
// goto error;
}
// Calculate scaling ratio while maintaining aspect ratio
ratio = MIN (1.0 * dest_width/ src_width, 1.0 * dest_height / src_height);
if ((crop_rect_params->width == 0) || (crop_rect_params->height == 0)) {
GST_ELEMENT_ERROR (dsexample, STREAM, FAILED,
("%s:crop_rect_params dimensions are zero",__func__), (NULL));
//goto error;
}
#ifdef __aarch64__
if (ratio <= 1.0 / 16 || ratio >= 16.0) {
// Currently cannot scale by ratio > 16 or < 1/16 for Jetson
// goto error;
}
#endif
// Set the transform ROIs for source and destination
src_rect = {(guint)src_top, (guint)src_left, (guint)src_width, (guint)src_height};
dst_rect = {0, 0, (guint)dest_width, (guint)dest_height};
// Set the transform parameters
transform_params.src_rect = &src_rect;
transform_params.dst_rect = &dst_rect;
transform_params.transform_flag =
NVBUFSURF_TRANSFORM_FILTER | NVBUFSURF_TRANSFORM_CROP_SRC |
NVBUFSURF_TRANSFORM_CROP_DST;
transform_params.transform_filter = NvBufSurfTransformInter_Default;
//Memset the memory
NvBufSurfaceMemSet (nvbuf, 0, 0, 0);
GST_DEBUG_OBJECT (dsexample, "Scaling and converting input buffer\n");
// Transformation scaling+format conversion if any.
err = NvBufSurfTransform (&ip_surf, nvbuf, &transform_params);
if (err != NvBufSurfTransformError_Success) {
GST_ELEMENT_ERROR (dsexample, STREAM, FAILED,
("NvBufSurfTransform failed with error %d while converting buffer", err),
(NULL));
//goto error;
}
// Map the buffer so that it can be accessed by CPU
if (NvBufSurfaceMap (nvbuf, 0, 0, NVBUF_MAP_READ) != 0){
// goto error;
}
// Cache the mapped data for CPU access
NvBufSurfaceSyncForCpu (nvbuf, 0, 0);
// Use openCV to remove padding and convert RGBA to BGR. Can be skipped if
// algorithm can handle padded RGBA data.
in_mat =
cv::Mat (dest_height, dest_width,
CV_8UC4, nvbuf->surfaceList[0].mappedAddr.addr[0],
nvbuf->surfaceList[0].pitch);
out_mat =
cv::Mat (cv::Size(dest_width, dest_height), CV_8UC3);
cv::cvtColor (in_mat, out_mat, CV_RGBA2BGR);
in_mat.release();
if (NvBufSurfaceUnMap (nvbuf, 0, 0)){
//goto error;
}
NvBufSurfaceDestroy(nvbuf);
#ifdef __aarch64__
// To use the converted buffer in CUDA, create an EGLImage and then use
// CUDA-EGL interop APIs
if (USE_EGLIMAGE) {
if (NvBufSurfaceMapEglImage (dsexample->inter_buf, 0) !=0 ) {
// goto error;
}
// dsexample->inter_buf->surfaceList[0].mappedAddr.eglImage
// Use interop APIs cuGraphicsEGLRegisterImage and
// cuGraphicsResourceGetMappedEglFrame to access the buffer in CUDA
// Destroy the EGLImage
NvBufSurfaceUnMapEglImage (dsexample->inter_buf, 0);
}
#endif
/* We will first convert only the Region of Interest (the entire frame or the
* object bounding box) to RGB and then scale the converted RGB frame to
* processing resolution. */
// return GST_FLOW_OK;
return out_mat;
// error:
// return GST_FLOW_ERROR;
}
/**
* Called when element recieves an input buffer from upstream element.
*/
static GstFlowReturn
gst_dsexample_transform_ip (GstBaseTransform * btrans, GstBuffer * inbuf)
{
GstDsExample *dsexample = GST_DSEXAMPLE (btrans);
GstMapInfo in_map_info;
GstFlowReturn flow_ret = GST_FLOW_ERROR;
gdouble scale_ratio = 1.0;
DsExampleOutput *output;
NvBufSurface *surface = NULL;
NvDsBatchMeta *batch_meta = NULL;
NvDsFrameMeta *frame_meta = NULL;
NvDsMetaList * l_frame = NULL;
guint i = 0;
dsexample->frame_num++;
CHECK_CUDA_STATUS (cudaSetDevice (dsexample->gpu_id),
"Unable to set cuda device");
memset (&in_map_info, 0, sizeof (in_map_info));
if (!gst_buffer_map (inbuf, &in_map_info, GST_MAP_READ)) {
g_print ("Error: Failed to map gst buffer\n");
goto error;
}
surface = (NvBufSurface *) in_map_info.data;
GST_DEBUG_OBJECT (dsexample,
"Processing Frame %" G_GUINT64_FORMAT " Surface %p\n",
dsexample->frame_num, surface);
if (CHECK_NVDS_MEMORY_AND_GPUID (dsexample, surface))
goto error;
batch_meta = gst_buffer_get_nvds_batch_meta (inbuf);
if (batch_meta == nullptr) {
GST_ELEMENT_ERROR (dsexample, STREAM, FAILED,
("NvDsBatchMeta not found for input buffer."), (NULL));
return GST_FLOW_ERROR;
}
if (dsexample->process_full_frame) {
for (l_frame = batch_meta->frame_meta_list; l_frame != NULL;
l_frame = l_frame->next)
{
frame_meta = (NvDsFrameMeta *) (l_frame->data);
NvOSD_RectParams rect_params;
// Scale the entire frame to processing resolution
rect_params.left = 0;
rect_params.top = 0;
rect_params.width = dsexample->video_info.width;
rect_params.height = dsexample->video_info.height;
// Scale and convert the frame
// if (get_converted_mat (dsexample, surface, i, &rect_params,
// scale_ratio, dsexample->video_info.width,
// dsexample->video_info.height) != GST_FLOW_OK) {
// goto error;
// }
// Process to get the output
output =
DsExampleProcess (dsexample->dsexamplelib_ctx,
dsexample->cvmat->data);
// Attach the metadata for the full frame
attach_metadata_full_frame (dsexample, frame_meta, scale_ratio, output, i);
i++;
free (output);
}
} else {
// Using object crops as input to the algorithm. The objects are detected by
// the primary detector
NvDsMetaList * l_obj = NULL;
NvDsObjectMeta *obj_meta = NULL;
for (l_frame = batch_meta->frame_meta_list; l_frame != NULL;
l_frame = l_frame->next)
{
frame_meta = (NvDsFrameMeta *) (l_frame->data);
for (l_obj = frame_meta->obj_meta_list; l_obj != NULL;
l_obj = l_obj->next)
{
obj_meta = (NvDsObjectMeta *) (l_obj->data);
/* Should not process on objects smaller than MIN_INPUT_OBJECT_WIDTH x MIN_INPUT_OBJECT_HEIGHT
* since it will cause hardware scaling issues. */
if (obj_meta->rect_params.width < MIN_INPUT_OBJECT_WIDTH ||
obj_meta->rect_params.height < MIN_INPUT_OBJECT_HEIGHT)
continue;
// Crop and scale the object
//if (
cv::Mat frameBuf = get_converted_mat (dsexample,surface, frame_meta->batch_id, &obj_meta->rect_params,scale_ratio, dsexample->video_info.width,dsexample->video_info.height) ;
//!= GST_FLOW_OK) {
// Error in conversion, skip processing on object. */
// continue;
// }
// Process the object crop to obtain label
output = DsExampleProcess (dsexample->dsexamplelib_ctx,
dsexample->cvmat->data);
// Attach labels for the object
attach_metadata_object (dsexample, obj_meta, output, frameBuf);
frameBuf.release();
free (output);
}
}
}
flow_ret = GST_FLOW_OK;
error:
gst_buffer_unmap (inbuf, &in_map_info);
return flow_ret;
}
static void
attach_metadata_object (GstDsExample * dsexample, NvDsObjectMeta * obj_meta,
DsExampleOutput * output, cv::Mat& frameBuf)
{
if (output->numObjects == 0)
return;
NvDsBatchMeta *batch_meta = obj_meta->base_meta.batch_meta;
NvDsUserMeta *user_meta = NULL;
NvDsMetaType user_meta_type = NVDS_USER_FRAME_META_EXAMPLE;
NvDsClassifierMeta *classifier_meta =
nvds_acquire_classifier_meta_from_pool (batch_meta);
classifier_meta->unique_component_id = dsexample->unique_id;
NvDsLabelInfo *label_info =
nvds_acquire_label_info_meta_from_pool (batch_meta);
g_strlcpy (label_info->result_label, output->object[0].label, MAX_LABEL_SIZE);
nvds_add_label_info_meta_to_classifier(classifier_meta, label_info);
nvds_add_classifier_meta_to_object (obj_meta, classifier_meta);
user_meta = nvds_acquire_user_meta_from_pool(batch_meta);
/* Set NvDsUserMeta below */
user_meta->user_meta_data = (void *)set_metadata_ptr(frameBuf);
user_meta->base_meta.meta_type = user_meta_type;
user_meta->base_meta.copy_func = (NvDsMetaCopyFunc)copy_user_meta;
user_meta->base_meta.release_func = (NvDsMetaReleaseFunc)release_user_meta;
/* We want to add NvDsUserMeta to frame level */
nvds_add_user_meta_to_obj(obj_meta, user_meta);
nvds_acquire_meta_lock (batch_meta);
NvOSD_TextParams & text_params = obj_meta->text_params;
NvOSD_RectParams & rect_params = obj_meta->rect_params;
nvds_release_meta_lock (batch_meta);
}
I have only changed these functions in dsexample.cpp to get the cropped cv::Mat data on obj_meta parameter to be later used on. But when I run
gst-launch-1.0 filesrc location= /home/nvidia/Downloads/deepstream_sdk_v4.0.1_x86_64/samples/streams/sample_720p.mp4 ! qtdemux ! h264parse ! nvv4l2decoder ! m.sink_0 nvstreammux name=m batch-size=1 width=1280 height=720 ! nvinfer config-file-path= /home/nvidia/Downloads/deepstream_sdk_v4.0.1_x86_64/samples/configs/deepstream-app/config_infer_primary.txt ! nvvideoconvert ! dsexample full-frame=0 ! nvdsosd ! nveglglessink
The program runs successfully, but the memory rises gradually. I wonder if the cv::Mat causing the memory leak. Any help is highly appreciated.