ERROR from src_elem: Internal data stream error while trying to connect USB camera to do detection

Please provide complete information as applicable to your setup.

• Hardware Platform (Jetson / GPU)
• DeepStream Version
hbrain@ubuntu:~/DeepStream-Yolo$ deepstream-app --version-all
deepstream-app version 6.3.0
DeepStreamSDK 6.3.0
CUDA Driver Version: 11.4
CUDA Runtime Version: 11.4
TensorRT Version: 8.5
cuDNN Version: 8.6
libNVWarp360 Version: 2.0.1d3

hbrain@ubuntu:~/DeepStream-Yolo$
• JetPack Version (5.1.3)
• TensorRT Version
• NVIDIA GPU Driver Version (valid for GPU only)
• Issue Type( ERROR from src_elem: Internal data stream error.)
** I am trying to do object detection using yolov8 in deepstream 6.3.0.

I have tested deepstream with recorded video, it worked but when I try to connect USB camera it is failed and saying

hbrain@ubuntu:~/DeepStream-Yolo$ deepstream-app -c deepstream_app_config_live_camera.txt
Opening in BLOCKING MODE
gstnvtracker: Loading low-level lib at /opt/nvidia/deepstream/deepstream/lib/libnvds_nvmultiobjecttracker.so
~~ CLOG[/dvs/git/dirty/git-master_linux/deepstream/sdk/src/utils/nvmultiobjecttracker/include/modules/NvMultiObjectTracker/NvTrackerParams.hpp, getConfigRoot() @line 52]: [NvTrackerParams::getConfigRoot()] !!![WARNING] Invalid low-level config file caused an exception, but will go ahead with the default config values
~~ CLOG[/dvs/git/dirty/git-master_linux/deepstream/sdk/src/utils/nvmultiobjecttracker/include/modules/NvMultiObjectTracker/NvTrackerParams.hpp, getConfigRoot() @line 52]: [NvTrackerParams::getConfigRoot()] !!![WARNING] Invalid low-level config file caused an exception, but will go ahead with the default config values
[NvMultiObjectTracker] Initialized
WARNING: [TRT]: Using an engine plan file across different models of devices is not recommended and is likely to affect performance or even cause errors.
0:00:07.840309338 10261 0xaaaadd9a6960 INFO nvinfer gstnvinfer.cpp:682:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::deserializeEngineAndBackend() <nvdsinfer_context_impl.cpp:1988> [UID = 1]: deserialized trt engine from :/home/hbrain/DeepStream-Yolo/model_b1_gpu0_fp16.engine
WARNING: [TRT]: The getMaxBatchSize() function should not be used with an engine built from a network created with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag. This function will always return 1.
INFO: [Implicit Engine Info]: layers num: 2
0 INPUT kFLOAT input 3x640x640
1 OUTPUT kFLOAT output 8400x6

0:00:07.926041146 10261 0xaaaadd9a6960 INFO nvinfer gstnvinfer.cpp:682:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::generateBackendContext() <nvdsinfer_context_impl.cpp:2091> [UID = 1]: Use deserialized engine model: /home/hbrain/DeepStream-Yolo/model_b1_gpu0_fp16.engine
0:00:07.941584096 10261 0xaaaadd9a6960 INFO nvinfer gstnvinfer_impl.cpp:328:notifyLoadModelStatus:<primary_gie> [UID 1]: Load new model:/home/hbrain/DeepStream-Yolo/config_infer_primary_yoloV8.txt sucessfully

Runtime commands:
h: Print this help
q: Quit

    p: Pause
    r: Resume

NOTE: To expand a source in the 2D tiled display and view object details, left-click on the source.
To go back to the tiled display, right-click anywhere on the window.

**PERF: FPS 0 (Avg)
**PERF: 0.00 (0.00)
** INFO: <bus_callback:239>: Pipeline ready

nvstreammux: Successfully handled EOS for source_id=0
** INFO: <bus_callback:225>: Pipeline running

ERROR from src_elem: Internal data stream error.
Debug info: gstbasesrc.c(3072): gst_base_src_loop (): /GstPipeline:pipeline/GstBin:multi_src_bin/GstBin:src_sub_bin0/GstV4l2Src:src_elem:
streaming stopped, reason not-negotiated (-4)
** INFO: <bus_callback:204>: incorrect camera parameters provided, please provide supported resolution and frame rate

** INFO: <bus_callback:262>: Received EOS. Exiting …

Quitting
[NvMultiObjectTracker] De-initialized
App run failed

Available camera is
hbrain@ubuntu:~/DeepStream-Yolo$ v4l2-ctl --list-devices
NVIDIA Tegra Video Input Device (platform:tegra-camrtc-ca):
/dev/media0

webcamproduct: usb-webcam (usb-3610000.xhci-2.1):
/dev/video0
/dev/video1
/dev/media1

hbrain@ubuntu:~/DeepStream-Yolo$

i am using GitHub - marcoslucianops/DeepStream-Yolo: NVIDIA DeepStream SDK 7.1 / 7.0 / 6.4 / 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 / 5.1 implementation for YOLO models github repo.

my deepstream_app_config.txt file

[application]
enable-perf-measurement=1
perf-measurement-interval-sec=5

[tiled-display]
enable=1
rows=1
columns=1
width=1920
height=1080
gpu-id=0
nvbuf-memory-type=0

[source0]
enable=1
type=1
camera-width=1920
camera-height=1080
camera-fps-n=30
camera-fps-d=1
camera-v4l2-dev-node=0
gpu-id=0

[sink0]
enable=0 # Disabled for headless operation

[sink1]
enable=1
type=3
container=1
codec=1
bitrate=4000000 # Reduced bitrate for 720p
output-file=camera_720p_detections.mp4
source-id=0
sync=0

[osd]
enable=1
gpu-id=0
border-width=3
text-size=12
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Serif
show-clock=0
nvbuf-memory-type=0
display-bbox=1
display-text=1
process-mode=1

[streammux]
gpu-id=0
live-source=1
batch-size=1
batched-push-timeout=4000

Match camera resolution

width=1280
height=720
enable-padding=0
nvbuf-memory-type=0

[primary-gie]
enable=1
gpu-id=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yoloV8.txt
interval=0

[tracker]
enable=1

Scale tracker resolution proportionally

tracker-width=640
tracker-height=360
gpu-id=0
ll-config-file=iou_config.txt
ll-lib-file=/opt/nvidia/deepstream/deepstream/lib/libnvds_nvmultiobjecttracker.so
display-tracking-id=1

[tests]
file-loop=0

Refer to this FAQ first, use the gst-launch-1.0 command line tune v4l2src parameters, then modify the configuration file.

Thank you for you repsonse,

I have solved the issue by following the instruction on How to use deepstream-app with MJPEG format stream?

changed the cap1 value video/x-raw to image-jpeg

but it did not worked, and then modified the code to encoder jpeg video.

and then worked

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.