Please provide the following information when requesting support.
• Hardware (T4/V100/Xavier/Nano/etc) 3090
• Network Type ActionRecognitionNet
• TLT Version nvcr.io/nvidia/tlt-streamanalytics:v3.0-py3
• Training spec file(If have, please share here)
train_rgb_3d_finetune.yaml (761 Bytes)
• How to reproduce the issue ? (This is for errors. Please share the command line and the detailed log here.)I am trying to train action recognition net inside TAO toolkit container by following the nvidia blog for ActionRecognitionNet.
I have started the container using the following command in my personal machine:
docker run --name fan-tlt --runtime=nvidia -it -v /var/run/docker.sock:/var/run/docker.sock -v /media/userdata/fanyl/tlt/:/home -p 8888:8888 -w /home nvcr.io/nvidia/tlt-streamanalytics:v3.0-py3 /bin/bash
Inside this, I was able to successfully follow the jupyter notebook as mentioned in the blog up till the training part. When i run the following command
print(“Train RGB only model with PTM”)
!tao action_recognition train
-e $SPECS_DIR/train_rgb_3d_finetune.yaml
-r $RESULTS_DIR/rgb_3d_ptm
-k $KEY
model_config.rgb_pretrained_model_path=$RESULTS_DIR/pretrained/actionrecognitionnet_vtrainable_v1.0/resnet18_3d_rgb_hmdb5_32.tlt
#ognition train
model_config.rgb_pretrained_num_classes=5
print(“Train RGB only model with PTM”)
!tao action_recognition train \
-e $SPECS_DIR/train_rgb_3d_finetune.yaml \
-r $RESULTS_DIR/rgb_3d_ptm \
-k $KEY \
model_config.rgb_pretrained_model_path=$RESULTS_DIR/pretrained/actionrecognitionnet_vtrainable_v1.0/resnet18_3d_rgb_hmdb5_32.tlt \
#ognition train \
model_config.rgb_pretrained_num_classes=5
I am getting error:
Train RGB only model with PTM
2022-05-20 11:58:15,350 [INFO] root: Registry: [‘nvcr.io’]
2022-05-20 11:58:15,418 [INFO] tlt.components.instance_handler.local_instance: Running command in container: nvcr.io/nvidia/tao/tao-toolkit-pyt:v3.21.11-py3
2022-05-20 11:58:15,541 [WARNING] tlt.components.docker_handler.docker_handler:
Docker will run the commands as root. If you would like to retain your
local host permissions, please add the “user”:“UID:GID” in the
DockerOptions portion of the “/root/.tao_mounts.json” file. You can obtain your
users UID and GID by using the “id -u” and “id -g” commands on the
terminal.
ERROR: The indicated experiment spec file /home/tlt-experiments/action_recognition_net/host/specs/train_rgb_3d_finetune.yaml
doesn’t exist!
2022-05-20 11:58:18,148 [INFO] tlt.components.docker_handler.docker_handler: Stopping container.
I can make sure that the file path exists. Why is this mistake?