I getting following while converting my quantized retrained model using tao-toolkit
[07/04/2023-10:22:04] [TRT] [V] *************** Autotuning format combination: Int8(958464,1872,78,1) -> Int8(958464,1872,78,1) ***************
[07/04/2023-10:22:04] [TRT] [V] Deleting timing cache: 2014 entries, served 3234 hits since creation.
[07/04/2023-10:22:04] [TRT] [E] 2: [weightConvertors.cpp::quantizeBiasCommon::337] Error Code 2: Internal Error (Assertion getter(i) != 0 failed. )
Traceback (most recent call last):
File "</usr/local/lib/python3.8/dist-packages/nvidia_tao_deploy/cv/detectnet_v2/scripts/gen_trt_engine.py>", line 3, in <module>
File "<frozen cv.detectnet_v2.scripts.gen_trt_engine>", line 202, in <module>
File "<frozen cv.detectnet_v2.scripts.gen_trt_engine>", line 67, in main
File "<frozen engine.builder>", line 196, in create_engine
AttributeError: __enter__
2023-07-04 10:22:04,990 [INFO] nvidia_tao_deploy.cv.common.entrypoint.entrypoint_proto: Sending telemetry data.
2023-07-04 10:22:05,085 [WARNING] nvidia_tao_deploy.cv.common.entrypoint.entrypoint_proto: Telemetry data couldn't be sent, but the command ran successfully.
2023-07-04 10:22:05,085 [WARNING] nvidia_tao_deploy.cv.common.entrypoint.entrypoint_proto: [Error]: <urlopen error [Errno -2] Name or service not known>
2023-07-04 10:22:05,086 [WARNING] nvidia_tao_deploy.cv.common.entrypoint.entrypoint_proto: Execution status: FAIL
• Hardware = T4 on Azure VM
• Network Type = Detectnet_v2
• TLT Version (Please run “tlt info --verbose” and share “docker_tag” here)
I am using docker with docker_tag = 4.0.0-deploy
• Training spec file(If have, please share here)
My spec file is as follow:
detectnet_v2_retrain_resnet18_coco_qat.txt (6.4 KB)
• How to reproduce the issue ? (This is for errors. Please share the command line and the detailed log here.)
Used following commands to run
detectnet_v2 export \
-m rtvp/experiment_dir_retrain_qat/weights/resnet18_detector_pruned_qat.tlt \
-o rtvp/experiment_dir_final/resnet18_detector_qat.etlt \
-k tlt_encode \
-e specs/detectnet_v2_retrain_resnet18_coco_qat.txt \
--cal_json_file rtvp/experiment_dir_final/calibration_qat.json \
--gen_ds_config \
--verbose
and then
detectnet_v2 gen_trt_engine \
-m rtvp/experiment_dir_final/resnet18_detector_qat.etlt \
-k tlt_encode \
-e specs/detectnet_v2_retrain_resnet18_coco_qat.txt \
--data_type int8 \
--batch_size 32 \
--max_batch_size 32\
--engine_file rtvp/experiment_dir_final/resnet18_detector_qat.trt.int8 \
--cal_cache_file rtvp/experiment_dir_final/calibration_qat.bin \
--cal_json_file rtvp/experiment_dir_final/calibration_qat.json \
--verbose