(base) quest@INTVMLT3947:~/nvidia_tao/tensorflow_backend/tao_tensorflow1_backend$ source scripts/envsetup.sh
TAO Toolkit TensorFlow2 build environment set up.
The following environment variables have been set:
NV_TAO_TF_TOP /home/quest/nvidia_tao/tensorflow_backend/tao_tensorflow1_backend
The following functions have been added to your environment:
tao_tf Run command inside the container.
(base) quest@INTVMLT3947:~/nvidia_tao/tensorflow_backend/tao_tensorflow1_backend$ tao_tf
Current root directory /home/quest/nvidia_tao/tensorflow_backend/tao_tensorflow1_backend
/home/quest/nvidia_tao/tensorflow_backend/tao_tensorflow1_backend/runner/tao_tf.py:93: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
if LooseVersion(docker_version) >= LooseVersion(“1.40”):
docker run -it --rm --gpus all -v /home/quest/nvidia_tao/tensorflow_backend/tao_tensorflow1_backend:/workspace/tao-tf1 -v /home/quest/getting_started_v5.3.0/notebooks/tao_data_services:/workspace/tao-experiments -v /home/quest/getting_started_v5.3.0/notebooks/tao_data_services/data:/data -v /home/quest/getting_started_v5.3.0/notebooks/tao_data_services/specs:/specs -v /home/quest/getting_started_v5.3.0/notebooks/tao_data_services/data_services:/results -e PYTHONPATH=/workspace/tao-tf1:$PYTHONPATH --shm-size 16G -w /workspace/tao-tf1 --net=host nvcr.io/nvidia/tao/tao-toolkit:5.0.0-tf1.15.5-base
================
== TensorFlow ==
NVIDIA Release 23.02-tf1 (build 52693369)
TensorFlow Version 1.15.5
Container image Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
Copyright 2017-2023 The TensorFlow Authors. All rights reserved.
Various files include modifications (c) NVIDIA CORPORATION & AFFILIATES. All rights reserved.
This container image and its contents are governed by the NVIDIA Deep Learning Container License.
By pulling and using the container, you accept the terms and conditions of this license:
root@INTVMLT3947:/workspace/tao-tf1# python nvidia_tao_tf1/cv/efficientdet/scripts/prune.py -m /workspace/tao-tf1/nvidia_tao_tf1/cv/efficientdet/results/exp2/model.epoch-1.tlt -o /workspace/tao-tf1/nvidia_tao_tf1/cv/efficientdet/results/exp2/prune
prune/ prune1/
root@INTVMLT3947:/workspace/tao-tf1# python nvidia_tao_tf1/cv/efficientdet/scripts/prune.py -m /workspace/tao-tf1/nvidia_tao_tf1/cv/efficientdet/results/exp2/model.epoch-1.tlt -o /workspace/tao-tf1/nvidia_tao_tf1/cv/efficientdet/results/exp2/prune1/ -pth 0.7
2024-07-21 07:07:43.745220: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudart.so.12
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
Using TensorFlow backend.
WARNING:tensorflow:TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
2024-07-21 07:07:44,729 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
2024-07-21 07:07:44,754 [TAO Toolkit] [WARNING] tensorflow 42: TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
2024-07-21 07:07:44,757 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
2024-07-21 07:07:45,053 [TAO Toolkit] [INFO] root 2102: Starting EfficientDet pruning.
2024-07-21 07:07:47,909 [TAO Toolkit] [INFO] root 2082: Loading weights from /workspace/tao-tf1/nvidia_tao_tf1/cv/efficientdet/results/exp2/model.epoch-1.tlt
WARNING:tensorflow:From nvidia_tao_tf1/cv/efficientdet/scripts/prune.py:214: The name tf.keras.backend.get_session is deprecated. Please use tf.compat.v1.keras.backend.get_session instead.
2024-07-21 07:07:47,974 [TAO Toolkit] [WARNING] tensorflow 137: From nvidia_tao_tf1/cv/efficientdet/scripts/prune.py:214: The name tf.keras.backend.get_session is deprecated. Please use tf.compat.v1.keras.backend.get_session instead.
2024-07-21 07:07:47.975935: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcuda.so.1
2024-07-21 07:07:49.768124: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1082] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-07-21 07:07:49.768221: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1674] Found device 0 with properties:
name: NVIDIA GeForce RTX 3080 Ti Laptop GPU major: 8 minor: 6 memoryClockRate(GHz): 1.395
pciBusID: 0000:01:00.0
2024-07-21 07:07:49.768239: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudart.so.12
2024-07-21 07:07:49.814583: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcublas.so.12
2024-07-21 07:07:49.818500: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcufft.so.11
2024-07-21 07:07:49.819475: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcurand.so.10
2024-07-21 07:07:49.835410: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcusolver.so.11
2024-07-21 07:07:49.837742: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcusparse.so.12
2024-07-21 07:07:49.837900: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudnn.so.8
2024-07-21 07:07:49.837972: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1082] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-07-21 07:07:49.838098: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1082] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-07-21 07:07:49.838158: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1802] Adding visible gpu devices: 0
2024-07-21 07:07:49.863250: I tensorflow/core/platform/profile_utils/cpu_utils.cc:109] CPU Frequency: 2918400000 Hz
2024-07-21 07:07:49.863874: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x1154340 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2024-07-21 07:07:49.863893: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
2024-07-21 07:07:49.900444: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1082] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-07-21 07:07:49.900592: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x4099f60 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2024-07-21 07:07:49.900608: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): NVIDIA GeForce RTX 3080 Ti Laptop GPU, Compute Capability 8.6
2024-07-21 07:07:49.900943: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1082] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-07-21 07:07:49.901034: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1674] Found device 0 with properties:
name: NVIDIA GeForce RTX 3080 Ti Laptop GPU major: 8 minor: 6 memoryClockRate(GHz): 1.395
pciBusID: 0000:01:00.0
2024-07-21 07:07:49.901051: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudart.so.12
2024-07-21 07:07:49.901068: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcublas.so.12
2024-07-21 07:07:49.901073: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcufft.so.11
2024-07-21 07:07:49.901079: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcurand.so.10
2024-07-21 07:07:49.901084: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcusolver.so.11
2024-07-21 07:07:49.901089: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcusparse.so.12
2024-07-21 07:07:49.901095: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudnn.so.8
2024-07-21 07:07:49.901129: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1082] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-07-21 07:07:49.901202: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1082] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-07-21 07:07:49.901256: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1802] Adding visible gpu devices: 0
2024-07-21 07:07:49.901269: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudart.so.12
2024-07-21 07:07:49.910379: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1214] Device interconnect StreamExecutor with strength 1 edge matrix:
2024-07-21 07:07:49.910416: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1220] 0
2024-07-21 07:07:49.910428: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1233] 0: N
2024-07-21 07:07:49.910795: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1082] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-07-21 07:07:49.911052: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1082] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-07-21 07:07:49.911206: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1359] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 14109 MB memory) → physical GPU (device: 0, name: NVIDIA GeForce RTX 3080 Ti Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6)
WARNING:tensorflow:From nvidia_tao_tf1/cv/efficientdet/scripts/prune.py:215: The name tf.global_variables_initializer is deprecated. Please use tf.compat.v1.global_variables_initializer instead.
2024-07-21 07:07:51,186 [TAO Toolkit] [WARNING] tensorflow 137: From nvidia_tao_tf1/cv/efficientdet/scripts/prune.py:215: The name tf.global_variables_initializer is deprecated. Please use tf.compat.v1.global_variables_initializer instead.
INFO:tensorflow:Restoring parameters from /tmp/tmp_3_um2bm/model.ckpt-3674
2024-07-21 07:07:51,506 [TAO Toolkit] [INFO] tensorflow 1284: Restoring parameters from /tmp/tmp_3_um2bm/model.ckpt-3674
2024-07-21 07:07:52,111 [TAO Toolkit] [INFO] main 227: Pruning process will take some time. Please wait…
2024-07-21 07:07:52,160 [TAO Toolkit] [INFO] nvidia_tao_tf1.core.pruning.pruning 981: Exploring graph for retainable indices
2024-07-21 07:07:52,160 [TAO Toolkit] [INFO] root 2102: Unknown layer type: <class ‘tensorflow.python.keras.engine.input_layer.InputLayer’>
Traceback (most recent call last):
File “nvidia_tao_tf1/cv/efficientdet/scripts/prune.py”, line 310, in
main()
File “nvidia_tao_tf1/cv/efficientdet/scripts/prune.py”, line 306, in main
raise e
File “nvidia_tao_tf1/cv/efficientdet/scripts/prune.py”, line 294, in main
run_pruning(args)
File “nvidia_tao_tf1/cv/efficientdet/scripts/prune.py”, line 229, in run_pruning
pruned_model = prune(
File “/workspace/tao-tf1/nvidia_tao_tf1/core/pruning/pruning.py”, line 1606, in prune
return pruner.prune(model, layer_config_overrides, output_layers_with_outbound_nodes)
File “/workspace/tao-tf1/nvidia_tao_tf1/core/pruning/pruning.py”, line 1211, in prune
model = self._explore(model)
File “/workspace/tao-tf1/nvidia_tao_tf1/core/pruning/pruning.py”, line 1142, in _explore
raise NotImplementedError(“Unknown layer type: %s” % type(layer))
NotImplementedError: Unknown layer type: <class ‘tensorflow.python.keras.engine.input_layer.InputLayer’>
root@INTVMLT3947:/workspace/tao-tf1#