Error while running resnet18_detector.trt weights with Deepstream sdk

I am getting the following error while running detection with resnet18_detector.trt in deepstream.

Creating LL OSD context new
0:00:02.190382078 11051 0x5575e3b09360 WARN                 nvinfer gstnvinfer.cpp:515:gst_nvinfer_logger:<secondary_gie_2> NvDsInferContext[UID 6]:log(): TensorRT was linked against cuBLAS 10.2.0 but loaded cuBLAS 10.1.0
0:00:02.194625421 11051 0x5575e3b09360 WARN                 nvinfer gstnvinfer.cpp:515:gst_nvinfer_logger:<secondary_gie_2> NvDsInferContext[UID 6]:log(): TensorRT was linked against cuBLAS 10.2.0 but loaded cuBLAS 10.1.0
0:00:02.264226184 11051 0x5575e3b09360 WARN                 nvinfer gstnvinfer.cpp:515:gst_nvinfer_logger:<secondary_gie_1> NvDsInferContext[UID 5]:log(): TensorRT was linked against cuBLAS 10.2.0 but loaded cuBLAS 10.1.0
0:00:02.268747649 11051 0x5575e3b09360 WARN                 nvinfer gstnvinfer.cpp:515:gst_nvinfer_logger:<secondary_gie_1> NvDsInferContext[UID 5]:log(): TensorRT was linked against cuBLAS 10.2.0 but loaded cuBLAS 10.1.0
0:00:02.313889778 11051 0x5575e3b09360 WARN                 nvinfer gstnvinfer.cpp:515:gst_nvinfer_logger:<secondary_gie_0> NvDsInferContext[UID 4]:log(): TensorRT was linked against cuBLAS 10.2.0 but loaded cuBLAS 10.1.0
0:00:02.315474609 11051 0x5575e3b09360 WARN                 nvinfer gstnvinfer.cpp:515:gst_nvinfer_logger:<secondary_gie_0> NvDsInferContext[UID 4]:log(): TensorRT was linked against cuBLAS 10.2.0 but loaded cuBLAS 10.1.0
gstnvtracker: Loading low-level lib at /opt/nvidia/deepstream/deepstream-4.0/lib/libnvds_mot_klt.so
gstnvtracker: Optional NvMOT_RemoveStreams not implemented
gstnvtracker: Batch processing is OFF
0:00:02.431214210 11051 0x5575e3b09360 ERROR                nvinfer gstnvinfer.cpp:511:gst_nvinfer_logger:<primary_gie_classifier> NvDsInferContext[UID 1]:log(): ../rtSafe/coreReadArchive.cpp (31) - Serialization Error in verifyHeader: 0 (Magic tag does not match)
0:00:02.440300328 11051 0x5575e3b09360 ERROR                nvinfer gstnvinfer.cpp:511:gst_nvinfer_logger:<primary_gie_classifier> NvDsInferContext[UID 1]:log(): INVALID_STATE: std::exception
0:00:02.440318986 11051 0x5575e3b09360 ERROR                nvinfer gstnvinfer.cpp:511:gst_nvinfer_logger:<primary_gie_classifier> NvDsInferContext[UID 1]:log(): INVALID_CONFIG: Deserialize the cuda engine failed.
0:00:02.440328210 11051 0x5575e3b09360 WARN                 nvinfer gstnvinfer.cpp:515:gst_nvinfer_logger:<primary_gie_classifier> NvDsInferContext[UID 1]:useEngineFile(): Failed to create engine from file
0:00:02.440358753 11051 0x5575e3b09360 INFO                 nvinfer gstnvinfer.cpp:519:gst_nvinfer_logger:<primary_gie_classifier> NvDsInferContext[UID 1]:initialize(): Trying to create engine from model files
0:00:02.440539045 11051 0x5575e3b09360 WARN                 nvinfer gstnvinfer.cpp:515:gst_nvinfer_logger:<primary_gie_classifier> NvDsInferContext[UID 1]:generateTRTModel(): INT8 calibration file not specified. Trying FP16 mode.
0:00:02.440545815 11051 0x5575e3b09360 ERROR                nvinfer gstnvinfer.cpp:511:gst_nvinfer_logger:<primary_gie_classifier> NvDsInferContext[UID 1]:generateTRTModel(): No model files specified
0:00:02.440552906 11051 0x5575e3b09360 ERROR                nvinfer gstnvinfer.cpp:511:gst_nvinfer_logger:<primary_gie_classifier> NvDsInferContext[UID 1]:initialize(): Failed to create engine from model files
0:00:02.440573765 11051 0x5575e3b09360 WARN                 nvinfer gstnvinfer.cpp:692:gst_nvinfer_start:<primary_gie_classifier> error: Failed to create NvDsInferContext instance
0:00:02.440577265 11051 0x5575e3b09360 WARN                 nvinfer gstnvinfer.cpp:692:gst_nvinfer_start:<primary_gie_classifier> error: Config file path: /home/ubuntu/Downloads/deepstream_sdk_v4.0.2_x86_64/samples/configs/Smarg/head_config.txt, NvDsInfer Error: NVDSINFER_CONFIG_FAILED
** ERROR: <main:651>: Failed to set pipeline to PAUSED
Quitting
ERROR from primary_gie_classifier: Failed to create NvDsInferContext instance
Debug info: gstnvinfer.cpp(692): gst_nvinfer_start (): /GstPipeline:pipeline/GstBin:primary_gie_bin/GstNvInfer:primary_gie_classifier:
Config file path: /home/ubuntu/Downloads/deepstream_sdk_v4.0.2_x86_64/samples/configs/Smarg/head_config.txt, NvDsInfer Error: NVDSINFER_CONFIG_FAILED
App run failed

My configuration files are :

# Copyright (c) 2018 NVIDIA Corporation.  All rights reserved.
#
# NVIDIA Corporation and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA Corporation is strictly prohibited.

[application]
enable-perf-measurement=1
perf-measurement-interval-sec=5
#gie-kitti-output-dir=streamscl

[tiled-display]
enable=1
rows=2
columns=2
width=1280
height=720
gpu-id=0
#(0): nvbuf-mem-default - Default memory allocated, specific to particular platform
#(1): nvbuf-mem-cuda-pinned - Allocate Pinned/Host cuda memory, applicable for Tesla
#(2): nvbuf-mem-cuda-device - Allocate Device cuda memory, applicable for Tesla
#(3): nvbuf-mem-cuda-unified - Allocate Unified cuda memory, applicable for Tesla
#(4): nvbuf-mem-surface-array - Allocate Surface Array memory, applicable for Jetson
nvbuf-memory-type=0

[source0]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI 4=RTSP
type=3
#uri=file://../../streams/TOLL1.mp4
uri=rtsp://192.168.1.201:554/user=admin&password=&channel=1&stream=0.sdp?real_stram
num-sources=4
#drop-frame-interval=2
gpu-id=0
# (0): memtype_device   - Memory type Device
# (1): memtype_pinned   - Memory type Host Pinned
# (2): memtype_unified  - Memory type Unified
cudadec-memtype=0

[sink0]
enable=1
#Type - 1=FakeSink 2=EglSink 3=File
type=2
sync=1
source-id=0
gpu-id=0
nvbuf-memory-type=0

[sink1]
enable=0
type=3
#1=mp4 2=mkv
container=1
#1=h264 2=h265
codec=1
sync=0
#iframeinterval=10
bitrate=2000000
output-file=out.mp4
source-id=0

[sink2]
enable=0
#Type - 1=FakeSink 2=EglSink 3=File 4=RTSPStreaming
type=4
#1=h264 2=h265
codec=1
sync=0
#iframeinterval=10
bitrate=400000
# set below properties in case of RTSPStreaming
rtsp-port=8554
udp-port=5400

[osd]
enable=1
gpu-id=0
border-width=1
text-size=15
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Serif
show-clock=0
clock-x-offset=800
clock-y-offset=820
clock-text-size=12
clock-color=1;0;0;0
nvbuf-memory-type=0

[streammux]
gpu-id=0
##Boolean property to inform muxer that sources are live
live-source=0
batch-size=4
##time out in usec, to wait after the first buffer is available
##to push the batch even if the complete batch is not formed
batched-push-timeout=40000
## Set muxer output width and height
width=1920
height=1080
##Enable to maintain aspect ratio wrt source, and allow black borders, works
##along with width, height properties
enable-padding=0
nvbuf-memory-type=0

# config-file property is mandatory for any gie section.
# Other properties are optional and if set will override the properties set in
# the infer config file.
[primary-gie]
enable=1
gpu-id=0
model-engine-file=../../models/HeadDetection/resnet18_detector.trt
batch-size=4
#Required by the app for OSD, not a plugin property
bbox-border-color0=1;0;0;1
bbox-border-color1=0;1;1;1
bbox-border-color2=0;0;1;1
bbox-border-color3=0;1;0;1
interval=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=head_config.txt

[tracker]
enable=1
tracker-width=640
tracker-height=368
#ll-lib-file=/opt/nvidia/deepstream/deepstream-4.0/lib/libnvds_mot_iou.so
#ll-lib-file=/opt/nvidia/deepstream/deepstream-4.0/lib/libnvds_nvdcf.so
ll-lib-file=/opt/nvidia/deepstream/deepstream-4.0/lib/libnvds_mot_klt.so
#ll-config-file required for DCF/IOU only
#ll-config-file=tracker_config.yml
#ll-config-file=iou_config.txt
gpu-id=0
#enable-batch-process applicable to DCF only
enable-batch-process=1

[secondary-gie0]
enable=1
model-engine-file=../../models/Secondary_VehicleTypes/resnet18.caffemodel_b16_int8.engine
gpu-id=0
batch-size=16
gie-unique-id=4
operate-on-gie-id=1
operate-on-class-ids=0;
config-file=config_infer_secondary_vehicletypes.txt

[secondary-gie1]
enable=1
model-engine-file=../../models/Secondary_CarColor/resnet18.caffemodel_b16_int8.engine
batch-size=16
gpu-id=0
gie-unique-id=5
operate-on-gie-id=1
operate-on-class-ids=0;
config-file=config_infer_secondary_carcolor.txt

[secondary-gie2]
enable=1
model-engine-file=../../models/Secondary_CarMake/resnet18.caffemodel_b16_int8.engine
batch-size=16
gpu-id=0
gie-unique-id=6
operate-on-gie-id=1
operate-on-class-ids=0;
config-file=config_infer_secondary_carmake.txt

[tests]
file-loop=0

and

# Copyright (c) 2018 NVIDIA Corporation.  All rights reserved.
#
# NVIDIA Corporation and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA Corporation is strictly prohibited.

# Following properties are mandatory when engine files are not specified:
#   int8-calib-file(Only in INT8)
#   Caffemodel mandatory properties: model-file, proto-file, output-blob-names
#   UFF: uff-file, input-dims, uff-input-blob-name, output-blob-names
#   ONNX: onnx-file
#
# Mandatory properties for detectors:
#   num-detected-classes
#
# Optional properties for detectors:
#   enable-dbscan(Default=false), interval(Primary mode only, Default=0)
#   custom-lib-path,
#   parse-bbox-func-name
#
# Mandatory properties for classifiers:
#   classifier-threshold, is-classifier
#
# Optional properties for classifiers:
#   classifier-async-mode(Secondary mode only, Default=false)
#
# Optional properties in secondary mode:
#   operate-on-gie-id(Default=0), operate-on-class-ids(Defaults to all classes),
#   input-object-min-width, input-object-min-height, input-object-max-width,
#   input-object-max-height
#
# Following properties are always recommended:
#   batch-size(Default=1)
#
# Other optional properties:
#   net-scale-factor(Default=1), network-mode(Default=0 i.e FP32),
#   model-color-format(Default=0 i.e. RGB) model-engine-file, labelfile-path,
#   mean-file, gie-unique-id(Default=0), offsets, gie-mode (Default=1 i.e. primary),
#   custom-lib-path, network-mode(Default=0 i.e FP32)
#
# The values in the config file are overridden by values set through GObject
# properties.

[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
#model-file=../../models/Primary_Detector/resnet10.caffemodel
#proto-file=../../models/Primary_Detector/resnet10.prototxt
model-engine-file=../../models/HeadDetection/resnet18_detector.trt
labelfile-path=../../models/HeadDetection/labels.txt
#int8-calib-file=../../models/HeadDetection/calibration.bin
batch-size=12
process-mode=1
model-color-format=0
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=1
num-detected-classes=1
interval=0
gie-unique-id=1
output-blob-names=conv2d_bbox;conv2d_cov/Sigmoid
#parse-bbox-func-name=NvDsInferParseCustomResnet
#custom-lib-path=/path/to/libnvdsparsebbox.so
#enable-dbscan=1

[class-attrs-all]
threshold=0.2
group-threshold=1
## Set eps=0.7 and minBoxes for enable-dbscan=1
eps=0.2
#minBoxes=3
roi-top-offset=0
roi-bottom-offset=0
detected-min-w=0
detected-min-h=0
detected-max-w=0
detected-max-h=0

## Per class configuration
#[class-attrs-2]
#threshold=0.6
#eps=0.5
#group-threshold=3
#roi-top-offset=20
#roi-bottom-offset=10
#detected-min-w=40
#detected-min-h=40
#detected-max-w=400
#detected-max-h=800

[b]Thanks.

[/b]

“Deserialize the cuda engine failed”
Is batch-size of this engine file is 12 ?
Can you also change batch-size in [primary-gie] and [streammux] to be 12 ?

hello ChrisDing,
Thanks for your response.
Yes Batch size of engine file was 12.
and yes I also changed the batch-size in [primary-gie] and [streammux] but getting same error.

Will appreciate any clue for this issue.
please help me out I am stuck in this problem from long time.
Thanks.

Can you use “trtexec” to test your engine file resnet18_detector.trt ?
$ trtexec --loadEngine=resnet18_detector.trt

Thanks ChrisDing.
I resolve this issue by downgrading TensorRT.