Unsupported operation _MultilevelCropAndResize_TRT (and a few others)

I’m trying to run PeopleSegNet (from Tao toolkit with Deepstream), I got this error.

wsadmin@AIML1001:/opt/nvidia/deepstream/deepstream/samples/configs/tao_pretrained_models$ sudo deepstream-app -c deepstream_app_source1_segmentation.txt

 *** DeepStream: Launched RTSP Streaming at rtsp://localhost:8554/ds-test ***

gstnvtracker: Loading low-level lib at /opt/nvidia/deepstream/deepstream/lib/libnvds_nvmultiobjecttracker.so
gstnvtracker: Batch processing is ON
gstnvtracker: Past frame output is ON
[NvMultiObjectTracker] Initialized
WARNING: ../nvdsinfer/nvdsinfer_model_builder.cpp:1482 Deserialize engine failed because file path: /opt/nvidia/deepstream/deepstream-6.1/samples/configs/tao_pretrained_models/../../models/tao_pretrained_models/peopleSegNet/V2/peoplesegnet_resnet50.etlt_b1_gpu0_int8.engine open error
0:00:00.814698376 541174 0x559916138120 WARN                 nvinfer gstnvinfer.cpp:643:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::deserializeEngineAndBackend() <nvdsinfer_context_impl.cpp:1888> [UID = 1]: deserialize engine from file :/opt/nvidia/deepstream/deepstream-6.1/samples/configs/tao_pretrained_models/../../models/tao_pretrained_models/peopleSegNet/V2/peoplesegnet_resnet50.etlt_b1_gpu0_int8.engine failed
0:00:00.829914802 541174 0x559916138120 WARN                 nvinfer gstnvinfer.cpp:643:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::generateBackendContext() <nvdsinfer_context_impl.cpp:1993> [UID = 1]: deserialize backend context from engine from file :/opt/nvidia/deepstream/deepstream-6.1/samples/configs/tao_pretrained_models/../../models/tao_pretrained_models/peopleSegNet/V2/peoplesegnet_resnet50.etlt_b1_gpu0_int8.engine failed, try rebuild
0:00:00.829937044 541174 0x559916138120 INFO                 nvinfer gstnvinfer.cpp:646:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::buildModel() <nvdsinfer_context_impl.cpp:1914> [UID = 1]: Trying to create engine from model files
ERROR: [TRT]: UffParser: Validator error: pyramid_crop_and_resize_box: Unsupported operation _MultilevelCropAndResize_TRT
parseModel: Failed to parse UFF model
ERROR: tlt/tlt_decode.cpp:358 Failed to build network, error in model parsing.
ERROR: ../nvdsinfer/nvdsinfer_model_builder.cpp:723 Failed to create network using custom network creation function
ERROR: ../nvdsinfer/nvdsinfer_model_builder.cpp:789 Failed to get cuda engine from custom library API
0:00:01.283208569 541174 0x559916138120 ERROR                nvinfer gstnvinfer.cpp:640:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Error in NvDsInferContextImpl::buildModel() <nvdsinfer_context_impl.cpp:1934> [UID = 1]: build engine file failed
Segmentation fault

• Hardware Platform (Jetson / GPU) GeForce RTX 3090
• DeepStream Version 6.1.0
• TensorRT Version 8.2.5.1-1+cuda11.4
• NVIDIA GPU Driver Version (valid for GPU only) 470.103.01
• Issue Type( questions, new requirements, bugs) questions or bugs
• How to reproduce the issue ? (This is for bugs. Including which sample app is using, the configuration files content, the command line used and other details for reproducing) sudo deepstream-app -c deepstream_app_source1_segmentation.txt
• CUDA Version : 11.4
• CUDNN Version : 8.4.0.27-1+cuda11.6
• Operating System : Ubuntu 20.04
• Python Version : 3.8.10 (default, Mar 15 2022, 12:22:08) [GCC 9.4.0]
• Tensorflow Version : 2.7.0

Relevant files

Config file (deepstream_app_source1_segmentation.txt)

[application]
enable-perf-measurement=1
perf-measurement-interval-sec=1

[tiled-display]
enable=1
rows=1
columns=1
width=960
height=540
gpu-id=0

[source0]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=2
num-sources=1
uri=file://../../streams/sample_qHD.mp4
gpu-id=0

[streammux]
gpu-id=0
batch-size=1
batched-push-timeout=40000
## Set muxer output width and height
width=960
height=540

[sink0]
enable=0
#Type - 1=FakeSink 2=EglSink 3=File
type=2
sync=0
source-id=0
gpu-id=0

[osd]
enable=1
gpu-id=0
border-width=3
text-size=15
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Serif
display-mask=1
display-bbox=0
display-text=0

[primary-gie]
enable=1
gpu-id=0
# Modify as necessary
batch-size=1
#Required by the app for OSD, not a plugin property
bbox-border-color0=1;0;0;1
bbox-border-color1=0;1;1;1
bbox-border-color2=0;0;1;1
bbox-border-color3=0;1;0;1
gie-unique-id=1
# Replace the infer primary config file when you need to
# use other detection models
# model-engine-file=../../models/tao_pretrained_models/mrcnn/mask_rcnn_resnet50.etlt_b1_gpu0_int8.engine
config-file=config_infer_primary_peopleSegNet.txt

[sink1]
enable=1
type=3
#1=mp4 2=mkv
container=1
#1=h264 2=h265 3=mpeg4
codec=1
#encoder type 0=Hardware 1=Software
enc-type=0
sync=0
bitrate=2000000
#H264 Profile - 0=Baseline 2=Main 4=High
#H265 Profile - 0=Main 1=Main10
profile=0
output-file=out.mp4
source-id=0

[sink2]
enable=1
#Type - 1=FakeSink 2=EglSink 3=File 4=RTSPStreaming 5=Overlay
type=4
#1=h264 2=h265
codec=1
#encoder type 0=Hardware 1=Software
enc-type=0
sync=0
bitrate=4000000
#H264 Profile - 0=Baseline 2=Main 4=High
#H265 Profile - 0=Main 1=Main10
profile=0
# set below properties in case of RTSPStreaming
rtsp-port=8554
udp-port=5400

[tracker]
enable=1
# For NvDCF and DeepSORT tracker, tracker-width and tracker-height must be a multiple of 32, respectively
tracker-width=640
tracker-height=384
ll-lib-file=/opt/nvidia/deepstream/deepstream/lib/libnvds_nvmultiobjecttracker.so
# ll-config-file required to set different tracker types
# ll-config-file=../deepstream-app/config_tracker_IOU.yml
ll-config-file=../deepstream-app/config_tracker_NvDCF_perf.yml
# ll-config-file=../deepstream-app/config_tracker_NvDCF_accuracy.yml
# ll-config-file=../deepstream-app/config_tracker_DeepSORT.yml
gpu-id=0
enable-batch-process=1
enable-past-frame=1
display-tracking-id=1

[tests]
file-loop=0

I am running into a similar issue for the detection model (deepstream_app_source1_detection_models.txt)
Here is the output for the detection model:

wsadmin@AIML1001:/opt/nvidia/deepstream/deepstream/samples/configs/tao_pretrained_models$ sudo deepstream-app -c deepstream_app_source1_detection_models.txt
gstnvtracker: Loading low-level lib at /opt/nvidia/deepstream/deepstream/lib/libnvds_nvmultiobjecttracker.so
gstnvtracker: Batch processing is ON
gstnvtracker: Past frame output is ON
[NvMultiObjectTracker] Initialized
0:00:00.203878513  2716 0x7f65a00022f0 WARN                 nvinfer gstnvinfer.cpp:643:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::initialize() <nvdsinfer_context_impl.cpp:1161> [UID = 1]: Warning, OpenCV has been deprecated. Using NMS for clustering instead of cv::groupRectangles with topK = 20 and NMS Threshold = 0.5
WARNING: ../nvdsinfer/nvdsinfer_model_builder.cpp:1482 Deserialize engine failed because file path: /opt/nvidia/deepstream/deepstream-6.1/samples/configs/tao_pretrained_models/../../models/tao_pretrained_models/ssd/ssd.etlt_b1_gpu0_int8.engine open error
0:00:00.793476196  2716 0x7f65a00022f0 WARN                 nvinfer gstnvinfer.cpp:643:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::deserializeEngineAndBackend() <nvdsinfer_context_impl.cpp:1888> [UID = 1]: deserialize engine from file :/opt/nvidia/deepstream/deepstream-6.1/samples/configs/tao_pretrained_models/../../models/tao_pretrained_models/ssd/ssd.etlt_b1_gpu0_int8.engine failed
0:00:00.808188616  2716 0x7f65a00022f0 WARN                 nvinfer gstnvinfer.cpp:643:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::generateBackendContext() <nvdsinfer_context_impl.cpp:1993> [UID = 1]: deserialize backend context from engine from file :/opt/nvidia/deepstream/deepstream-6.1/samples/configs/tao_pretrained_models/../../models/tao_pretrained_models/ssd/ssd.etlt_b1_gpu0_int8.engine failed, try rebuild
0:00:00.808211489  2716 0x7f65a00022f0 INFO                 nvinfer gstnvinfer.cpp:646:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::buildModel() <nvdsinfer_context_impl.cpp:1914> [UID = 1]: Trying to create engine from model files
ERROR: [TRT]: UffParser: Validator error: FirstDimTile_4: Unsupported operation _BatchTilePlugin_TRT
parseModel: Failed to parse UFF model
ERROR: tlt/tlt_decode.cpp:358 Failed to build network, error in model parsing.
ERROR: ../nvdsinfer/nvdsinfer_model_builder.cpp:723 Failed to create network using custom network creation function
ERROR: ../nvdsinfer/nvdsinfer_model_builder.cpp:789 Failed to get cuda engine from custom library API
0:00:01.187606492  2716 0x7f65a00022f0 ERROR                nvinfer gstnvinfer.cpp:640:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Error in NvDsInferContextImpl::buildModel() <nvdsinfer_context_impl.cpp:1934> [UID = 1]: build engine file failed
Segmentation fault

And here’s the config file for deepstream_app_source1_detection_models.txt:

[application]
enable-perf-measurement=1
perf-measurement-interval-sec=1

[tiled-display]
enable=1
rows=1
columns=1
width=1280
height=720
gpu-id=0

[source0]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=3
num-sources=1
uri=file://../../streams/sample_1080p_h265.mp4
gpu-id=0

[streammux]
gpu-id=0
batch-size=1
batched-push-timeout=40000
## Set muxer output width and height
width=1920
height=1080

[sink0]
enable=1
#Type - 1=FakeSink 2=EglSink 3=File
type=2
sync=1
source-id=0
gpu-id=0

[osd]
enable=1
gpu-id=0
border-width=3
text-size=15
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Arial

[primary-gie]
enable=1
gpu-id=0
# Modify as necessary
batch-size=1
#Required by the app for OSD, not a plugin property
bbox-border-color0=1;0;0;1
bbox-border-color1=0;1;1;1
bbox-border-color2=0;0;1;1
bbox-border-color3=0;1;0;1
gie-unique-id=1
# Replace the infer primary config file when you need to
# use other detection models
#config-file=config_infer_primary_frcnn_dgpu.txt
#config-file=config_infer_primary_frcnn_jetson.txt
config-file=config_infer_primary_ssd.txt
#config-file=config_infer_primary_dssd.txt
#config-file=config_infer_primary_retinanet.txt
#config-file=config_infer_primary_yolov3_dgpu.txt
#config-file=config_infer_primary_yolov3_jetson.txt
#config-file=config_infer_primary_yolov4_dgpu.txt
#config-file=config_infer_primary_yolov4_jetson.txt
#config-file=config_infer_primary_detectnet_v2.txt
#config-file=config_infer_primary_yolov4-tiny_dgpu.txt
#config-file=config_infer_primary_yolov4-tiny_jetson.txt
#config-file=config_infer_primary_efficientdet.txt

[sink1]
enable=0
type=3
#1=mp4 2=mkv
container=1
#1=h264 2=h265 3=mpeg4
codec=1
#encoder type 0=Hardware 1=Software
enc-type=0
sync=0
bitrate=2000000
#H264 Profile - 0=Baseline 2=Main 4=High
#H265 Profile - 0=Main 1=Main10
profile=0
output-file=out.mp4
source-id=0

[sink2]
enable=0
#Type - 1=FakeSink 2=EglSink 3=File 4=RTSPStreaming 5=Overlay
type=4
#1=h264 2=h265
codec=1
#encoder type 0=Hardware 1=Software
enc-type=0
sync=0
bitrate=4000000
#H264 Profile - 0=Baseline 2=Main 4=High
#H265 Profile - 0=Main 1=Main10
profile=0
# set below properties in case of RTSPStreaming
rtsp-port=8554
udp-port=5400

[tracker]
enable=1
# For NvDCF and DeepSORT tracker, tracker-width and tracker-height must be a multiple of 32, respectively
tracker-width=640
tracker-height=384
ll-lib-file=/opt/nvidia/deepstream/deepstream/lib/libnvds_nvmultiobjecttracker.so
# ll-config-file required to set different tracker types
# ll-config-file=../deepstream-app/config_tracker_IOU.yml
ll-config-file=../deepstream-app/config_tracker_NvDCF_perf.yml
# ll-config-file=../deepstream-app/config_tracker_NvDCF_accuracy.yml
# ll-config-file=../deepstream-app/config_tracker_DeepSORT.yml
gpu-id=0
enable-batch-process=1
enable-past-frame=1
display-tracking-id=1

[tests]
file-loop=0

By the way, running PeopleNet worked without problems.

Can you share you nvinfer configure? Do you have any change based on DS 6.1 release?

I don’t recall changing anything in that config

mher@AIML1001:/opt/nvidia/deepstream/deepstream/samples/configs/tao_pretrained_models$ cat config_infer_primary_peopleSegNet.txt
################################################################################
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
################################################################################

[property]
gpu-id=0
net-scale-factor=0.017507
offsets=123.675;116.280;103.53
model-color-format=0
tlt-model-key=nvidia_tlt
tlt-encoded-model=../../models/tao_pretrained_models/peopleSegNet/V2/peoplesegnet_resnet50.etlt
model-engine-file=../../models/tao_pretrained_models/peopleSegNet/V2/peoplesegnet_resnet50.etlt_b1_gpu0_int8.engine
network-type=3 ## 3 is for instance segmentation network
labelfile-path=./peopleSegNet_labels.txt
int8-calib-file=../../models/tao_pretrained_models/peopleSegNet/V2/peoplesegnet_resnet50_int8.txt
infer-dims=3;576;960
num-detected-classes=2
uff-input-blob-name=Input
batch-size=1
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=1
interval=0
gie-unique-id=1
#no cluster
## 1=DBSCAN, 2=NMS, 3= DBSCAN+NMS Hybrid, 4 = None(No clustering)
## MRCNN supports only cluster-mode=4; Clustering is done by the model itself
cluster-mode=4
output-instance-mask=1
output-blob-names=generate_detections;mask_fcn_logits/BiasAdd
parse-bbox-instance-mask-func-name=NvDsInferParseCustomMrcnnTLTV2
custom-lib-path=/opt/nvidia/deepstream/deepstream/lib/libnvds_infercustomparser.so

[class-attrs-all]
pre-cluster-threshold=0.8

Can you have a try with below which list in the /opt/nvidia/deepstream/deepstream/samples/configs/tao_pretrained_models/README.md

  • For instance segmentation models(MaskRCNN/peopelSegNet), use deepstream_app_source1_mrcnn.txt

When I tried running the mrcnn:

wsadmin@AIML1001:/opt/nvidia/deepstream/deepstream/samples/configs/tao_pretrained_models$ sudo deepstream-app -c deepstream_app_source1_mrcnn.txt
gstnvtracker: Loading low-level lib at /opt/nvidia/deepstream/deepstream-6.0/lib/libnvds_nvmultiobjecttracker.so
gstnvtracker: Failed to open low-level lib at /opt/nvidia/deepstream/deepstream-6.0/lib/libnvds_nvmultiobjecttracker.so
 dlopen error: /opt/nvidia/deepstream/deepstream-6.0/lib/libnvds_nvmultiobjecttracker.so: cannot open shared object file: No such file or directory
gstnvtracker: Failed to initilaize low level lib.
** ERROR: <main:716>: Failed to set pipeline to PAUSED
Quitting
App run failed

I looked up this issue and one moderator had suggested to run gst-inspect-1.0 nvinfer, so I did and got this output:
No such element or plugin 'nvinfer'

After this, I realized that the error had something to do with the tracker so i disabled it in the deepstream_app_source1_mrcnn.txt config file:

[application]
enable-perf-measurement=1
perf-measurement-interval-sec=1

[tiled-display]
enable=1
rows=1
columns=1
width=960
height=540
gpu-id=0

[source0]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=3
num-sources=1
uri=file://../../streams/sample_qHD.mp4
gpu-id=0

[streammux]
gpu-id=0
batch-size=1
batched-push-timeout=40000
## Set muxer output width and height
width=960
height=540

[sink0]
enable=0
#Type - 1=FakeSink 2=EglSink 3=File
type=2
sync=0
source-id=0
gpu-id=0

[osd]
enable=1
gpu-id=0
border-width=3
text-size=15
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Serif
display-mask=1
display-bbox=0
display-text=0

[primary-gie]
enable=1
gpu-id=0
# Modify as necessary
batch-size=1
#Required by the app for OSD, not a plugin property
bbox-border-color0=1;0;0;1
bbox-border-color1=0;1;1;1
bbox-border-color2=0;0;1;1
bbox-border-color3=0;1;0;1
gie-unique-id=1
# Replace the infer primary config file when you need to
# use other detection models
# model-engine-file=../../models/tao_pretrained_models/mrcnn/mask_rcnn_resnet50.etlt_b1_gpu0_int8.engine
config-file=config_infer_primary_peopleSegNet.txt

[sink1]
enable=1
type=3
#1=mp4 2=mkv
container=1
#1=h264 2=h265 3=mpeg4
codec=1
#encoder type 0=Hardware 1=Software
enc-type=0
sync=0
bitrate=2000000
#H264 Profile - 0=Baseline 2=Main 4=High
#H265 Profile - 0=Main 1=Main10
profile=0
output-file=out.mp4
source-id=0

[sink2]
enable=0
#Type - 1=FakeSink 2=EglSink 3=File 4=RTSPStreaming 5=Overlay
type=4
#1=h264 2=h265
codec=1
#encoder type 0=Hardware 1=Software
enc-type=0
sync=0
bitrate=4000000
#H264 Profile - 0=Baseline 2=Main 4=High
#H265 Profile - 0=Main 1=Main10
profile=0
# set below properties in case of RTSPStreaming
rtsp-port=8554
udp-port=5400

[tracker]
enable=0
# For NvDCF and DeepSORT tracker, tracker-width and tracker-height must be a multiple of 32, respectively
tracker-width=640
tracker-height=384
ll-lib-file=/opt/nvidia/deepstream/deepstream-6.0/lib/libnvds_nvmultiobjecttracker.so
# ll-config-file required to set different tracker types
# ll-config-file=../deepstream-app/config_tracker_IOU.yml
ll-config-file=../deepstream-app/config_tracker_NvDCF_perf.yml
# ll-config-file=../deepstream-app/config_tracker_NvDCF_accuracy.yml
# ll-config-file=../deepstream-app/config_tracker_DeepSORT.yml
gpu-id=0
enable-batch-process=1
enable-past-frame=1
display-tracking-id=1

[tests]
file-loop=0

After this change i ran sudo deepstream-app -c deepstream_app_source1_mrcnn.txt again and got this instead:

WARNING: ../nvdsinfer/nvdsinfer_model_builder.cpp:1482 Deserialize engine failed because file path: /opt/nvidia/deepstream/deepstream-6.1/samples/configs/tao_pretrained_models/../../models/tao_pretrained_models/peopleSegNet/V2/peoplesegnet_resnet50.etlt_b1_gpu0_int8.engine open error
0:00:00.779937490 15464 0x55fffdc30780 WARN                 nvinfer gstnvinfer.cpp:643:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::deserializeEngineAndBackend() <nvdsinfer_context_impl.cpp:1888> [UID = 1]: deserialize engine from file :/opt/nvidia/deepstream/deepstream-6.1/samples/configs/tao_pretrained_models/../../models/tao_pretrained_models/peopleSegNet/V2/peoplesegnet_resnet50.etlt_b1_gpu0_int8.engine failed
0:00:00.794853098 15464 0x55fffdc30780 WARN                 nvinfer gstnvinfer.cpp:643:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::generateBackendContext() <nvdsinfer_context_impl.cpp:1993> [UID = 1]: deserialize backend context from engine from file :/opt/nvidia/deepstream/deepstream-6.1/samples/configs/tao_pretrained_models/../../models/tao_pretrained_models/peopleSegNet/V2/peoplesegnet_resnet50.etlt_b1_gpu0_int8.engine failed, try rebuild
0:00:00.794875210 15464 0x55fffdc30780 INFO                 nvinfer gstnvinfer.cpp:646:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::buildModel() <nvdsinfer_context_impl.cpp:1914> [UID = 1]: Trying to create engine from model files
ERROR: [TRT]: UffParser: Validator error: pyramid_crop_and_resize_box: Unsupported operation _MultilevelCropAndResize_TRT
parseModel: Failed to parse UFF model
ERROR: tlt/tlt_decode.cpp:358 Failed to build network, error in model parsing.
ERROR: ../nvdsinfer/nvdsinfer_model_builder.cpp:723 Failed to create network using custom network creation function
ERROR: ../nvdsinfer/nvdsinfer_model_builder.cpp:789 Failed to get cuda engine from custom library API
0:00:01.238895218 15464 0x55fffdc30780 ERROR                nvinfer gstnvinfer.cpp:640:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Error in NvDsInferContextImpl::buildModel() <nvdsinfer_context_impl.cpp:1934> [UID = 1]: build engine file failed
Segmentation fault

This is the same error as in the topmost post

Please check latest /opt/nvidia/deepstream/deepstream-6.1/samples/configs/tao_pretrained_models/README.md after git clone. Please follow the guide of README.md and use deepstream_app_source1_segmentation.txt.

I did

Do you upgrade TRT plugin lib based on the guide in the README?

- https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps/tree/master/TRT-OSS/Jetson for Jetson

- https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps/tree/master/TRT-OSS/x86 for x86

I tried doing this, on the second step (as the readme suggested) in the end when running $HOME/install/bin/cmake .. -DGPU_ARCHS=86 -DTRT_LIB_DIR=/usr/lib/x86_64-linux-gnu/ -DCMAKE_C_COMPILER=/ I encountered an error.

[Couldn’t find CUDA library root. · Issue #65] (Couldn't find CUDA library root. · Issue #65 · NVIDIA-AI-IOT/deepstream_tao_apps · GitHub)

Solved this by following Option 2 (lookout for some variation of versions, specify yours as needed) of the prerequisite guide in the readme

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.