Evaluate Trained models in Tao toolkit

Make sure you set correct ~/.tao_mounts.json to map local files into docker.

Hi,
Issues have been resolved. The code has started to work but it give me the following output

Validation cost: 0.000236
Mean average_precision (in %): 0.0000

class name      average precision (in %)
------------  --------------------------
car                                    0
cyclist                                0
pedestrian                             0

Image size i have used is

output_width: 960
output_height: 544

For peoplenet, from the model card, there are 3 classes - person, bag, face
So, it can not evaluate “car”, “cyclist” and “pedestrian”.

I have trained yolov4 model only on Person class . So i want to evaluate peoplenet model on only person class. So please guide me how can i evaluate pretrained people net model on my custom dataset

Refer to People Net - - #5 by Morganh

Hi ,

I have trained my yolov4 model only for one class that is Person. So in my Kitti dataset we have one class called Person.
Now on this same dataset i want to evaluate Peoplenet mode with Resnet18 architecture.
Is it possible to evaluate the trained model on my custom dataset which has one class Person only or do i need to modify my custom dataset

Yes, it is possible.

Hi,

So I did use the same data set on DetectnetV2 Jupyter notebook with Key changed to tlt_encode. It still calculates the MAP as 0 but when i do the inferencing on images it shows me two classed bag and person detection with good MAP.

So now can you help me where i am going wrong as to why it is calculating the MAP as 0

Please share the spec file.

Hi Pls find below the file used in evaluation of Pretrained model of Peoplenet

detectnet_v2_train_resnet18_kitti.txt

random_seed: 42
dataset_config {
  data_sources {
    #tfrecords_path: "/workspace/tao-experiments/data/tfrecords/kitti_trainval/*"
    tfrecords_path: "/workspace/tao-experiments/data/training/tfrecords/train*"
    image_directory_path: "/workspace/tao-experiments/data/training"
  }
  image_extension: "jpg"
  target_class_mapping {
    key: "car"
    value: "car"
  }
  target_class_mapping {
    key: "cyclist"
    value: "cyclist"
  }
  target_class_mapping {
    key: "person"
    value: "person"
  }
  target_class_mapping {
    #key: "person_sitting"
    key: "person"
    value: "person"
  }
  target_class_mapping {
    key: "van"
    value: "car"
  }
  validation_fold: 0
}
augmentation_config {
  preprocessing {
    #output_image_width: 1248
    #output_image_height: 384
    output_image_width: 960
    output_image_height: 544
    min_bbox_width: 1.0
    min_bbox_height: 1.0
    output_image_channel: 3
  }
  spatial_augmentation {
    hflip_probability: 0.5
    zoom_min: 1.0
    zoom_max: 1.0
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    hue_rotation_max: 25.0
    saturation_shift_max: 0.20000000298
    contrast_scale_max: 0.10000000149
    contrast_center: 0.5
  }
}
postprocessing_config {
  target_class_config {
    key: "car"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.20000000298
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "cyclist"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.15000000596
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "person"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00749999983236
        dbscan_eps: 0.230000004172
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
}
model_config {
  pretrained_model_file: "/workspace/tao-experiments/detectnet_v2/pretrained_resnet18/pretrained_detectnet_v2_vresnet18/resnet18.hdf5"
  num_layers: 18
  use_batch_norm: true
  objective_set {
    bbox {
      scale: 35.0
      offset: 0.5
    }
    cov {
    }
  }
  arch: "resnet"
}
evaluation_config {
  validation_period_during_training: 10
  first_validation_epoch: 30
  minimum_detection_ground_truth_overlap {
    key: "car"
    value: 0.699999988079
  }
  minimum_detection_ground_truth_overlap {
    key: "cyclist"
    value: 0.5
  }
  minimum_detection_ground_truth_overlap {
    key: "person"
    value: 0.5
  }
  evaluation_box_config {
    key: "car"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "cyclist"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "person"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  average_precision_mode: INTEGRATE
}
cost_function_config {
  target_classes {
    name: "car"
    class_weight: 1.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  target_classes {
    name: "cyclist"
    class_weight: 8.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 1.0
    }
  }
  target_classes {
    name: "person"
    class_weight: 4.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  enable_autoweighting: true
  max_objective_weight: 0.999899983406
  min_objective_weight: 9.99999974738e-05
}
training_config {
  batch_size_per_gpu: 4
  num_epochs: 120
  learning_rate {
    soft_start_annealing_schedule {
      min_learning_rate: 5e-06
      max_learning_rate: 5e-04
      soft_start: 0.10000000149
      annealing: 0.699999988079
    }
  }
  regularizer {
    type: L1
    weight: 3.00000002618e-09
  }
  optimizer {
    adam {
      epsilon: 9.99999993923e-09
      beta1: 0.899999976158
      beta2: 0.999000012875
    }
  }
  cost_scaling {
    initial_exponent: 20.0
    increment: 0.005
    decrement: 1.0
  }
  checkpoint_interval: 10
}
bbox_rasterizer_config {
  target_class_config {
    key: "car"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.40000000596
      cov_radius_y: 0.40000000596
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "cyclist"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 1.0
      cov_radius_y: 1.0
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "person"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 1.0
      cov_radius_y: 1.0
      bbox_min_radius: 1.0
    }
  }
  deadzone_radius: 0.400000154972
}

Hi Below is the file used for training YOLOV4
yolov4_train_resnet18_kitti.txt

random_seed: 42
yolov4_config {
 # big_anchor_shape: "[(114.94, 60.67), (159.06, 114.59), (297.59, 176.38)]"
 # mid_anchor_shape: "[(42.99, 31.91), (79.57, 31.75), (56.80, 56.93)]"
 # small_anchor_shape: "[(15.60, 13.88), (30.25, 20.25), (20.67, 49.63)]"
  
  big_anchor_shape: "[(56.00, 136.00), (95.00, 167.00), (170.00, 212.00)]"
  mid_anchor_shape: "[(51.00, 64.00), (36.00, 109.00), (53.00, 98.00)]"
  small_anchor_shape: "[(21.00, 39.00), (35.00, 43.00), (30.00, 66.00)]"
  
  box_matching_iou: 0.25
  matching_neutral_box_iou: 0.5
  arch: "resnet"
  nlayers: 18
  arch_conv_blocks: 2
  loss_loc_weight: 1.0
  loss_neg_obj_weights: 1.0
  loss_class_weights: 1.0
  label_smoothing: 0.0
  big_grid_xy_extend: 0.05
  mid_grid_xy_extend: 0.1
  small_grid_xy_extend: 0.2
  freeze_bn: false
  #freeze_blocks: 0
  force_relu: false
}
training_config {
  batch_size_per_gpu: 8
  num_epochs: 80
  enable_qat: false
  checkpoint_interval: 2
  learning_rate {
    soft_start_cosine_annealing_schedule {
      min_learning_rate: 1e-7
      max_learning_rate: 1e-4
      soft_start: 0.3
    }
  }
  regularizer {
    type: L1
    weight: 3e-5
  }
  optimizer {
    adam {
      epsilon: 1e-7
      beta1: 0.9
      beta2: 0.999
      amsgrad: false
    }
  }
  pretrain_model_path: "/workspace/tao-experiments/yolo_v4/pretrained_resnet18/pretrained_object_detection_vresnet18/resnet_18.hdf5"
  #resume_model_path: "/workspace/tao-experiments/yolo_v4/experiment_dir_unpruned/weights/yolov4_resnet18_epoch_054.tlt"
}
eval_config {
  average_precision_mode: SAMPLE
  batch_size: 8
  matching_iou_threshold: 0.5
}
nms_config {
  confidence_threshold: 0.001
  clustering_iou_threshold: 0.5
  force_on_cpu: true
  top_k: 200
}
augmentation_config {
  hue: 0.1
  saturation: 1.5
  exposure:1.5
  vertical_flip:0
  horizontal_flip: 0.5
  jitter: 0.3
  #output_width: 1248
  #output_height: 384
  output_width: 960
  output_height: 544
  output_channel: 3
  randomize_input_shape_period: 0
  mosaic_prob: 0.5
  mosaic_min_ratio:0.2
}
dataset_config {
  data_sources: {
      tfrecords_path: "/workspace/tao-experiments/data/training/tfrecords/train*"
      image_directory_path: "/workspace/tao-experiments/data/training"
  }
  include_difficult_in_training: true
  image_extension: "jpg"
 #target_class_mapping {
  #    key: "car"
   #   value: "car"
  #}
  target_class_mapping {
      key: "person"
      value: "pedestrian"
  }
  #target_class_mapping {
   #   key: "cyclist"
    #  value: "cyclist"
  #}
  #target_class_mapping {
   #   key: "van"
    #  value: "car"
  #}
  #target_class_mapping {
   #   key: "person"
    #  value: "pedestrian"
  #}

  validation_data_sources: {
      tfrecords_path: "/workspace/tao-experiments/data/val/tfrecords/val*"
      image_directory_path: "/workspace/tao-experiments/data/val"
  }
}

For evaluation of peoplenet, refer to PeopleNet v1.0 unpruned model shows very bad results on COCO dataset - #11 by Morganh
And also make sure the images whose labels are Person

I am trying to evaluate unpruned_v1.0 Peoplenet model on my custom dataset, for which i am using the Tao evaluate part. The output received is


Validation cost: 0.002590
Mean average_precision (in %): 0.0000

class name      average precision (in %)
------------  --------------------------
car                                    0
cyclist                                0
person                                 0

The detectnet_v2_train_resnet18_kitti.txt which is used for evaluation is as follows, it does not contain class bag and face as mentioned on the forum.

random_seed: 42
dataset_config {
  data_sources {
    #tfrecords_path: "/workspace/tao-experiments/data/tfrecords/kitti_trainval/*"
    tfrecords_path: "/workspace/tao-experiments/data/training/tfrecords/train*"
    image_directory_path: "/workspace/tao-experiments/data/training"
  }
  image_extension: "jpg"
  target_class_mapping {
    key: "car"
    value: "car"
  }
  target_class_mapping {
    key: "cyclist"
    value: "cyclist"
  }
  target_class_mapping {
    key: "person"
    value: "person"
  }
  target_class_mapping {
    #key: "person_sitting"
    key: "person"
    value: "person"
  }
  target_class_mapping {
    key: "van"
    value: "car"
  }
  validation_fold: 0
}
augmentation_config {
  preprocessing {
    #output_image_width: 1248
    #output_image_height: 384
    output_image_width: 960
    output_image_height: 544
    min_bbox_width: 1.0
    min_bbox_height: 1.0
    output_image_channel: 3
  }
  spatial_augmentation {
    hflip_probability: 0.5
    zoom_min: 1.0
    zoom_max: 1.0
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    hue_rotation_max: 25.0
    saturation_shift_max: 0.20000000298
    contrast_scale_max: 0.10000000149
    contrast_center: 0.5
  }
}
postprocessing_config {
  target_class_config {
    key: "car"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.20000000298
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "cyclist"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.15000000596
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "person"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00749999983236
        dbscan_eps: 0.230000004172
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
}
model_config {
  pretrained_model_file: "/workspace/tao-experiments/detectnet_v2/pretrained_resnet18/pretrained_detectnet_v2_vresnet18/resnet18.hdf5"
  num_layers: 18
  use_batch_norm: true
  objective_set {
    bbox {
      scale: 35.0
      offset: 0.5
    }
    cov {
    }
  }
  arch: "resnet"
}
evaluation_config {
  validation_period_during_training: 10
  first_validation_epoch: 30
  minimum_detection_ground_truth_overlap {
    key: "car"
    value: 0.699999988079
  }
  minimum_detection_ground_truth_overlap {
    key: "cyclist"
    value: 0.5
  }
  minimum_detection_ground_truth_overlap {
    key: "person"
    value: 0.5
  }
  evaluation_box_config {
    key: "car"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "cyclist"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "person"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  average_precision_mode: INTEGRATE
}
cost_function_config {
  target_classes {
    name: "car"
    class_weight: 1.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  target_classes {
    name: "cyclist"
    class_weight: 8.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 1.0
    }
  }
  target_classes {
    name: "person"
    class_weight: 4.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  enable_autoweighting: true
  max_objective_weight: 0.999899983406
  min_objective_weight: 9.99999974738e-05
}
training_config {
  batch_size_per_gpu: 4
  num_epochs: 120
  learning_rate {
    soft_start_annealing_schedule {
      min_learning_rate: 5e-06
      max_learning_rate: 5e-04
      soft_start: 0.10000000149
      annealing: 0.699999988079
    }
  }
  regularizer {
    type: L1
    weight: 3.00000002618e-09
  }
  optimizer {
    adam {
      epsilon: 9.99999993923e-09
      beta1: 0.899999976158
      beta2: 0.999000012875
    }
  }
  cost_scaling {
    initial_exponent: 20.0
    increment: 0.005
    decrement: 1.0
  }
  checkpoint_interval: 10
}
bbox_rasterizer_config {
  target_class_config {
    key: "car"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.40000000596
      cov_radius_y: 0.40000000596
      bbox_min_radius: 1.0
    }
 }
  target_class_config {
    key: "cyclist"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 1.0
      cov_radius_y: 1.0
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "person"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 1.0
      cov_radius_y: 1.0
      bbox_min_radius: 1.0
    }
  }
  deadzone_radius: 0.400000154972
}

Where exactly am i going wrong??

I even tried commenting other classed apart from person in the specification file, then it gives me dimension error. Do i need a different specs file to evaluate this model.Pls help

I have even changed the class names in specs file to Person face and bag as below, still the value of map is 0 for person

random_seed: 42
dataset_config {
  data_sources {
    #tfrecords_path: "/workspace/tao-experiments/data/tfrecords/kitti_trainval/*"
    tfrecords_path: "/workspace/tao-experiments/data/training/tfrecords/train*"
    image_directory_path: "/workspace/tao-experiments/data/training"
  }
  image_extension: "jpg"
  target_class_mapping {
    key: "person"
    value: "person"
  }
  target_class_mapping {
    key: "face"
    value: "face"
  }
  target_class_mapping {
    key: "bag"
    value: "bag"
  }
  validation_fold: 0
}
augmentation_config {
  preprocessing {
    output_image_width: 960
    output_image_height: 544
    min_bbox_width: 1.0
    min_bbox_height: 1.0
    output_image_channel: 3
  }
  spatial_augmentation {
    hflip_probability: 0.5
    zoom_min: 1.0
    zoom_max: 1.0
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    hue_rotation_max: 25.0
    saturation_shift_max: 0.20000000298
    contrast_scale_max: 0.10000000149
    contrast_center: 0.5
  }
}
postprocessing_config {
  target_class_config {
    key: "face"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.20000000298
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "bag"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.15000000596
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "person"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00749999983236
        dbscan_eps: 0.230000004172
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
}
model_config {
  pretrained_model_file: "/workspace/tao-experiments/detectnet_v2/pretrained_resnet18/pretrained_detectnet_v2_vresnet18/resnet18.hdf5"
  num_layers: 18
  use_batch_norm: true
  objective_set {
    bbox {
      scale: 35.0
      offset: 0.5
    }
    cov {
    }
  }
  arch: "resnet"
}
evaluation_config {
  validation_period_during_training: 10
  first_validation_epoch: 30
  minimum_detection_ground_truth_overlap {
    key: "face"
    value: 0.699999988079
  }
  minimum_detection_ground_truth_overlap {
    key: "bag"
    value: 0.5
  }
  minimum_detection_ground_truth_overlap {
    key: "person"
    value: 0.5
  }
  evaluation_box_config {
    key: "face"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "bag"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "person"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  average_precision_mode: INTEGRATE
}
cost_function_config {
  target_classes {
    name: "face"
    class_weight: 1.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  target_classes {
    name: "bag"
    class_weight: 8.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 1.0
    }
  }
  target_classes {
    name: "person"
    class_weight: 4.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  enable_autoweighting: true
  max_objective_weight: 0.999899983406
  min_objective_weight: 9.99999974738e-05
}
training_config {
  batch_size_per_gpu: 4
  num_epochs: 120
  learning_rate {
    soft_start_annealing_schedule {
      min_learning_rate: 5e-06
      max_learning_rate: 5e-04
      soft_start: 0.10000000149
      annealing: 0.699999988079
    }
  }
  regularizer {
    type: L1
    weight: 3.00000002618e-09
  }
  optimizer {
    adam {
      epsilon: 9.99999993923e-09
      beta1: 0.899999976158
      beta2: 0.999000012875
    }
  }
  cost_scaling {
    initial_exponent: 20.0
    increment: 0.005
    decrement: 1.0
  }
  checkpoint_interval: 10
}
bbox_rasterizer_config {
  target_class_config {
    key: "face"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.40000000596
      cov_radius_y: 0.40000000596
      bbox_min_radius: 1.0
    }
 }
  target_class_config {
    key: "bag"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 1.0
      cov_radius_y: 1.0
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "person"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 1.0
      cov_radius_y: 1.0
      bbox_min_radius: 1.0
    }
  }
  deadzone_radius: 0.400000154972
}


Output obtained for Resnet34.tlt

Validation cost: 0.002590
Mean average_precision (in %): 0.0000

class name average precision (in %)


bag 0
face 0
person 0

Could you modify the value in target_class_mapping to upper case, and also modify other places to upper case?
Refer to PeopleNet v1.0 unpruned model shows very bad results on COCO dataset - #11 by Morganh.

Changed the value in Target_class to upper case and also at other places as below

random_seed: 42
dataset_config {
  data_sources {
    #tfrecords_path: "/workspace/tao-experiments/data/tfrecords/kitti_trainval/*"
    tfrecords_path: "/workspace/tao-experiments/data/training/tfrecords/train*"
    image_directory_path: "/workspace/tao-experiments/data/training"
  }
  image_extension: "jpg"
  target_class_mapping {
    key: "Person"
    value: "Person"
  }
  target_class_mapping {
    key: "Face"
    value: "Face"
  }
  target_class_mapping {
    key: "Bag"
    value: "Bag"
  }
  validation_fold: 0
}
augmentation_config {
  preprocessing {
    output_image_width: 960
    output_image_height: 544
    min_bbox_width: 1.0
    min_bbox_height: 1.0
    output_image_channel: 3
  }
  spatial_augmentation {
    hflip_probability: 0.5
    zoom_min: 1.0
    zoom_max: 1.0
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    hue_rotation_max: 25.0
    saturation_shift_max: 0.20000000298
    contrast_scale_max: 0.10000000149
    contrast_center: 0.5
  }
}
postprocessing_config {
  target_class_config {
    key: "Face"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.20000000298
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "Bag"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.15000000596
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "Person"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00749999983236
        dbscan_eps: 0.230000004172
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
}
model_config {
  pretrained_model_file: "/workspace/tao-experiments/detectnet_v2/pretrained_resnet18/pretrained_detectnet_v2_vresnet18/resnet18.hdf5"
  num_layers: 18
  use_batch_norm: true
  objective_set {
    bbox {
      scale: 35.0
      offset: 0.5
    }
    cov {
    }
  }
  arch: "resnet"
}
evaluation_config {
  validation_period_during_training: 10
  first_validation_epoch: 30
  minimum_detection_ground_truth_overlap {
    key: "Face"
    value: 0.699999988079
  }
  minimum_detection_ground_truth_overlap {
    key: "Bag"
    value: 0.5
  }
  minimum_detection_ground_truth_overlap {
    key: "Person"
    value: 0.5
  }
  evaluation_box_config {
    key: "Face"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "Bag"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "Person"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  average_precision_mode: INTEGRATE
}
cost_function_config {
  target_classes {
    name: "Face"
    class_weight: 1.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  target_classes {
    name: "Bag"
    class_weight: 8.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 1.0
    }
  }
  target_classes {
    name: "Person"
    class_weight: 4.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  enable_autoweighting: true
  max_objective_weight: 0.999899983406
  min_objective_weight: 9.99999974738e-05
}
training_config {
  batch_size_per_gpu: 4
  num_epochs: 120
  learning_rate {
    soft_start_annealing_schedule {
      min_learning_rate: 5e-06
      max_learning_rate: 5e-04
      soft_start: 0.10000000149
      annealing: 0.699999988079
    }
  }
  regularizer {
    type: L1
    weight: 3.00000002618e-09
  }
  optimizer {
    adam {
      epsilon: 9.99999993923e-09
      beta1: 0.899999976158
      beta2: 0.999000012875
    }
  }
  cost_scaling {
    initial_exponent: 20.0
    increment: 0.005
    decrement: 1.0
  }
  checkpoint_interval: 10
}
bbox_rasterizer_config {
  target_class_config {
    key: "Face"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.40000000596
      cov_radius_y: 0.40000000596
      bbox_min_radius: 1.0
    }
 }
  target_class_config {
    key: "Bag"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 1.0
      cov_radius_y: 1.0
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "Person"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 1.0
      cov_radius_y: 1.0
      bbox_min_radius: 1.0
    }
  }
  deadzone_radius: 0.400000154972
}

output is still 0

Validation cost: 0.000203
Mean average_precision (in %): 0.0000

class name      average precision (in %)
------------  --------------------------
Bag                                    0
Face                                   0
Person                                 0

Could you refer to PeopleNet v1.0 unpruned model shows very bad results on COCO dataset - #11 by Morganh ?

Pay attention to below.

target_class_mapping {
key: “person
value: “Person”
}

model_config {
pretrained_model_file: “/workspace/its/peoplenet/resnet34_peoplenet.tlt”
num_layers: 34
load_graph: True

min_learning_rate: 10e-10
max_learning_rate: 10e-10

I have incorporated all the changes according to the reference suggested by you, Now i am getting the following error

2022-07-05 15:15:14,735 [INFO] root: Registry: ['nvcr.io']
2022-07-05 15:15:14,956 [INFO] tlt.components.instance_handler.local_instance: Running command in container: nvcr.io/nvidia/tao/tao-toolkit-tf:v3.22.05-tf1.15.4-py3
Using TensorFlow backend.
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
/usr/local/lib/python3.6/dist-packages/requests/__init__.py:91: RequestsDependencyWarning: urllib3 (1.26.5) or chardet (3.0.4) doesn't match a supported version!
  RequestsDependencyWarning)
Using TensorFlow backend.
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_auto_weight_hook.py:43: The name tf.train.SessionRunHook is deprecated. Please use tf.estimator.SessionRunHook instead.

2022-07-05 09:45:31,902 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_auto_weight_hook.py:43: The name tf.train.SessionRunHook is deprecated. Please use tf.estimator.SessionRunHook instead.

2022-07-05 09:45:32,033 [INFO] iva.detectnet_v2.spec_handler.spec_loader: Merging specification from /workspace/tao-experiments/detectnet_v2/specs/detectnet_v2_train_resnet18_kitti.txt
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:153: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.

2022-07-05 09:45:32,039 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:153: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.

WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/evaluation/build_evaluator.py:72: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.

2022-07-05 09:45:32,039 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/evaluation/build_evaluator.py:72: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.

2022-07-05 09:45:32,463 [INFO] root: Loading model weights.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

2022-07-05 09:45:35,321 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.

2022-07-05 09:45:35,429 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.

2022-07-05 09:45:35,477 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.

2022-07-05 09:45:38,038 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.

2022-07-05 09:45:38,039 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.

2022-07-05 09:45:38,039 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.

2022-07-05 09:45:38,353 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.

/usr/local/lib/python3.6/dist-packages/keras/engine/saving.py:292: UserWarning: No training configuration found in save file: the model was *not* compiled. Compile it manually.
  warnings.warn('No training configuration found in save file: '
2022-07-05 09:45:39,001 [INFO] iva.detectnet_v2.objectives.bbox_objective: Default L1 loss function will be used.
2022-07-05 09:45:39,001 [INFO] root: Building dataloader.
2022-07-05 09:45:39,297 [INFO] root: Sampling mode of the dataloader was set to user_defined.
2022-07-05 09:45:39,297 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Serial augmentation enabled = False
2022-07-05 09:45:39,298 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Pseudo sharding enabled = False
2022-07-05 09:45:39,298 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Max Image Dimensions (all sources): (0, 0)
2022-07-05 09:45:39,298 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: number of cpus: 256, io threads: 512, compute threads: 256, buffered batches: 4
2022-07-05 09:45:39,298 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: total dataset size 350, number of sources: 1, batch size per gpu: 16, steps: 22
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/autograph/converters/directives.py:119: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.

2022-07-05 09:45:39,339 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/autograph/converters/directives.py:119: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.

WARNING:tensorflow:Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7fba8e1700b8>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7fba8e1700b8>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2022-07-05 09:45:39,378 [WARNING] tensorflow: Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7fba8e1700b8>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7fba8e1700b8>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2022-07-05 09:45:39,396 [INFO] iva.detectnet_v2.dataloader.default_dataloader: Bounding box coordinates were detected in the input specification! Bboxes will be automatically converted to polygon coordinates.
2022-07-05 09:45:39,610 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: shuffle: False - shard 0 of 1
2022-07-05 09:45:39,615 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: sampling 1 datasets with weights:
2022-07-05 09:45:39,616 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: source: 0 weight: 1.000000
WARNING:tensorflow:Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7fba68235da0>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7fba68235da0>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2022-07-05 09:45:39,629 [WARNING] tensorflow: Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7fba68235da0>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7fba68235da0>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2022-07-05 09:45:39,841 [INFO] iva.detectnet_v2.evaluation.build_evaluator: Found 350 samples in validation set
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_auto_weight_hook.py:107: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead.

2022-07-05 09:45:39,842 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_auto_weight_hook.py:107: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead.

WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_auto_weight_hook.py:110: The name tf.get_variable is deprecated. Please use tf.compat.v1.get_variable instead.

2022-07-05 09:45:39,842 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_auto_weight_hook.py:110: The name tf.get_variable is deprecated. Please use tf.compat.v1.get_variable instead.

WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_auto_weight_hook.py:113: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead.

2022-07-05 09:45:39,844 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_auto_weight_hook.py:113: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead.

WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/rasterizers/bbox_rasterizer.py:347: The name tf.bincount is deprecated. Please use tf.math.bincount instead.

2022-07-05 09:45:39,981 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/rasterizers/bbox_rasterizer.py:347: The name tf.bincount is deprecated. Please use tf.math.bincount instead.

WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_functions.py:17: The name tf.log is deprecated. Please use tf.math.log instead.

2022-07-05 09:45:40,827 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_functions.py:17: The name tf.log is deprecated. Please use tf.math.log instead.

WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_auto_weight_hook.py:235: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead.

2022-07-05 09:45:40,863 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_auto_weight_hook.py:235: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead.

Traceback (most recent call last):
  File "/root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/scripts/evaluate.py", line 204, in <module>
  File "/root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/scripts/evaluate.py", line 194, in <module>
  File "<decorator-gen-2>", line 2, in main
  File "/root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/utilities/timer.py", line 46, in wrapped_fn
  File "/root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/scripts/evaluate.py", line 177, in main
  File "/root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/evaluation/build_evaluator.py", line 163, in build_evaluator_for_trained_gridbox
  File "/root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/model/utilities.py", line 30, in _fn_wrapper
  File "/root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/model/detectnet_model.py", line 743, in build_validation_graph
  File "/root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/model/detectnet_model.py", line 551, in _cost_func
  File "/root/.cache/bazel/_bazel_root/b770f990bb7b9e2db5771981fb3a38b4/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_auto_weight_hook.py", line 227, in cost_combiner_func
AssertionError
2022-07-05 15:15:43,731 [INFO] tlt.components.docker_handler.docker_handler: Stopping container.

My Specs file is as below after making the changes

random_seed: 42
dataset_config {
  data_sources {
    tfrecords_path: "/workspace/tao-experiments/data/tfrecords/kitti_trainval/*"
    image_directory_path: "/workspace/tao-experiments/data/training"
  }
  image_extension: "png"
  target_class_mapping {
    key: "car"
    value: "car"
  }
  target_class_mapping {
    key: "cyclist"
    value: "cyclist"
  }
  target_class_mapping {
    key: "pedestrian"
    value: "pedestrian"
  }
  target_class_mapping {
    key: "person_sitting"
    value: "pedestrian"
  }
  target_class_mapping {
    key: "van"
    value: "car"
  }
  validation_fold: 0
}
augmentation_config {
  preprocessing {
    output_image_width: 1248
    output_image_height: 384
    min_bbox_width: 1.0
    min_bbox_height: 1.0
    output_image_channel: 3
  }
  spatial_augmentation {
    hflip_probability: 0.5
    zoom_min: 1.0
    zoom_max: 1.0
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    hue_rotation_max: 25.0
    saturation_shift_max: 0.20000000298
    contrast_scale_max: 0.10000000149
    contrast_center: 0.5
  }
}
postprocessing_config {
  target_class_config {
    key: "car"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.20000000298
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "cyclist"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.15000000596
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "pedestrian"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00749999983236
        dbscan_eps: 0.230000004172
        dbscan_min_samples: 0.0500000007451
        minimum_bounding_box_height: 20
      }
    }
  }
}
model_config {
  pretrained_model_file: "/workspace/tao-experiments/detectnet_v2/experiment_dir_pruned/resnet18_nopool_bn_detectnet_v2_pruned.tlt"
  num_layers: 18
  use_batch_norm: true
  load_graph: true
  objective_set {
    bbox {
      scale: 35.0
      offset: 0.5
    }
    cov {
    }
  }
  arch: "resnet"
}
evaluation_config {
  validation_period_during_training: 10
  first_validation_epoch: 30
  minimum_detection_ground_truth_overlap {
    key: "car"
    value: 0.699999988079
  }
  minimum_detection_ground_truth_overlap {
    key: "cyclist"
    value: 0.5
  }
  minimum_detection_ground_truth_overlap {
    key: "pedestrian"
    value: 0.5
  }
  evaluation_box_config {
    key: "car"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "cyclist"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "pedestrian"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  average_precision_mode: INTEGRATE
}
cost_function_config {
  target_classes {
    name: "car"
    class_weight: 1.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  target_classes {
    name: "cyclist"
    class_weight: 8.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 1.0
    }
  }
  target_classes {
    name: "pedestrian"
    class_weight: 4.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  enable_autoweighting: true
  max_objective_weight: 0.999899983406
  min_objective_weight: 9.99999974738e-05
}
training_config {
  batch_size_per_gpu: 4
  num_epochs: 120
  learning_rate {
    soft_start_annealing_schedule {
      min_learning_rate: 5e-06
      max_learning_rate: 5e-04
      soft_start: 0.10000000149
      annealing: 0.699999988079
    }
  }
  regularizer {
    type: L1
    weight: 3.00000002618e-09
  }
  optimizer {
    adam {
      epsilon: 9.99999993923e-09
      beta1: 0.899999976158
      beta2: 0.999000012875
    }
  }
  cost_scaling {
    initial_exponent: 20.0
    increment: 0.005
    decrement: 1.0
  }
  checkpoint_interval: 10
}
bbox_rasterizer_config {
  target_class_config {
    key: "car"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.40000000596
      cov_radius_y: 0.40000000596
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "cyclist"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 1.0
      cov_radius_y: 1.0
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "pedestrian"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 1.0
      cov_radius_y: 1.0
      bbox_min_radius: 1.0
    }
  }
  deadzone_radius: 0.400000154972
}