Has anyone bench marked the execution time and frames per second for object detection application with different deep learning frameworks?
Which one among the Deep Learning frameworks (Caffe, Torch, Darknet) might be the fastest for object detection and localization with bounding box prediction for real-time video on Jetson TK1?
Loaded network /home/ubuntu/JEP/topic_974063/py-faster-rcnn/data/faster_rcnn_models/VGG16_faster_rcnn_final.caffemodel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000456.jpg
Detection took 1.641s for 300 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000542.jpg
Detection took 1.467s for 161 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001150.jpg
Detection took 1.623s for 194 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001763.jpg
Detection took 1.657s for 196 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/004545.jpg
Detection took 1.617s for 300 object proposals
Loading weights from yolo-small.weights...Done!
Enter Image Path: peds-007.png
peds-007.png: Predicted in 21.923227 seconds.
person: 0.39
person: 0.20
person: 0.23
person: 0.29
Not compiled with OpenCV, saving to predictions.png instead
Not compiled with OpenCV, saving to resized.png instead