Gemm runs too slow with shared memory

I want to use shared memory to speed up gemm, I got code from

but it is slower than gemm with global memory, I want to know what’s wrong with my code:
I compare naiveKernel (global memory), MatMulKernel(shared memory) and cublasgemm,Matrix A B C size 4096*4096,the result is :
shared mem kernel time 1631.566650ms
cublas time 41.416702ms
naive time 1208.498047ms

12800HX 4070 laptop 32GBmemory
nvcc -std=c++17 -arch=sm_89 -g -lcublas -lcudart -G -O3 -o test test.cu

#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <iostream>
#include <stdio.h>

#include <cublas_v2.h>
// Thread block size
#define BLOCK_SIZE 16
// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {
    int width;
    int height;
    int stride;
    float* elements;
} Matrix;
// Get a matrix element
__device__ float GetElement(const Matrix A, int row, int col)
{
    return A.elements[row * A.stride + col];
}
// Set a matrix element
__device__ void SetElement(Matrix A, int row, int col,
                           float value)
{
    A.elements[row * A.stride + col] = value;
}
// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is
// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
 __device__ Matrix GetSubMatrix(Matrix A, int row, int col)
{
    Matrix Asub;
    Asub.width    = BLOCK_SIZE;
    Asub.height   = BLOCK_SIZE;
    Asub.stride   = A.stride;
    Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row
                                         + BLOCK_SIZE * col];
    return Asub;
}
// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);
__global__ void naiveKernel(const Matrix, const Matrix, Matrix);
// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
    // Load A and B to device memory
    Matrix d_A;
    d_A.width = d_A.stride = A.width; d_A.height = A.height;
    size_t size = A.width * A.height * sizeof(float);
    cudaMalloc(&d_A.elements, size);
    cudaMemcpy(d_A.elements, A.elements, size,
               cudaMemcpyHostToDevice);
    Matrix d_B;
    d_B.width = d_B.stride = B.width; d_B.height = B.height;
    size = B.width * B.height * sizeof(float);
    cudaMalloc(&d_B.elements, size);
    cudaMemcpy(d_B.elements, B.elements, size,
    cudaMemcpyHostToDevice);
    // Allocate C in device memory
    Matrix d_C;
    d_C.width = d_C.stride = C.width; d_C.height = C.height;
    size = C.width * C.height * sizeof(float);
    cudaMalloc(&d_C.elements, size);
    // Invoke kernel
    dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
    dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
    cudaEvent_t start,end;
    cudaEventCreate(&start);
    cudaEventCreate(&end);
    cudaEventRecord(start);
    // cudaEventSynchronize(start);
    MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
    cudaEventRecord(end);
    cudaEventSynchronize(end);
    float msec;
    cudaEventElapsedTime(&msec, start, end);
    printf("shared mem kernel time %.6f\n",msec);

    
    cublasHandle_t cublas_handle;
    
    cublasCreate(&cublas_handle);
    float cublas_alpha = 1.0;
    float cublas_beta = 0;
    
    cudaEvent_t start2,end2;
    cudaEventCreate(&start2);
    cudaEventCreate(&end2);
    cudaEventRecord(start2);
    cudaEventSynchronize(start2);
    cublasSgemm_v2(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, 4096,4096, 4096,
     &cublas_alpha, d_A.elements, 4096, d_B.elements, 4096, &cublas_beta, d_C.elements, 4096);
    
    cudaEventRecord(end2);
    cudaEventSynchronize(end2);
    
    float msec2;
    cudaEventElapsedTime(&msec2, start2, end2);
    printf("cublas time %.6fms\n",msec2);
    
    cudaEvent_t start3,end3;
    cudaEventCreate(&start3);
    cudaEventCreate(&end3);
    cudaEventRecord(start3);
    cudaEventSynchronize(start3);
    naiveKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
    cudaEventRecord(end3);
    cudaEventSynchronize(end3);
    
    float msec3;
    cudaEventElapsedTime(&msec3, start3, end3);
    printf("naive time %.6fms\n",msec3);
    // Read C from device memory
    cudaMemcpy(C.elements, d_C.elements, size,
               cudaMemcpyDeviceToHost);
    // Free device memory
    cudaFree(d_A.elements);
    cudaFree(d_B.elements);
    cudaFree(d_C.elements);
    
}


int main(void) {
    Matrix A, B, C;
    A.width = B.width = C.width = 4096;
    A.height = B.height = C.height = 4096;
    A.stride = B.stride = C.stride = 128;
    int sizeA = A.width * A.height * sizeof(float);
    int sizeB = B.width * B.height * sizeof(float);
    int sizeC = C.width * C.height * sizeof(float);
    A.elements = (float *)malloc(sizeA);
    B.elements = (float *)malloc(sizeB);
    C.elements = (float *)malloc(sizeC);
    for (int i = 0; i < A.width * A.height; i++)
        {A.elements[i] = 1;}
    for (int i = 0; i < B.width * B.height; i++)
        {B.elements[i] = 2;}
    
    MatMul(A, B, C);
    return 0;
}




// Matrix multiplication kernel called by MatMul()
 __global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{
    // Block row and column
    int blockRow = blockIdx.y;
    int blockCol = blockIdx.x;
    // Each thread block computes one sub-matrix Csub of C
    Matrix Csub = GetSubMatrix(C, blockRow, blockCol);
    // Each thread computes one element of Csub
    // by accumulating results into Cvalue
    float Cvalue = 0;
    // Thread row and column within Csub
    int row = threadIdx.y;
    int col = threadIdx.x;
    // Loop over all the sub-matrices of A and B that are
    // required to compute Csub
    // Multiply each pair of sub-matrices together
    // and accumulate the results
    for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {
        // Get sub-matrix Asub of A
        Matrix Asub = GetSubMatrix(A, blockRow, m);
        // Get sub-matrix Bsub of B
        Matrix Bsub = GetSubMatrix(B, m, blockCol);
        // Shared memory used to store Asub and Bsub respectively
        __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
        __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
        // Load Asub and Bsub from device memory to shared memory
        // Each thread loads one element of each sub-matrix
        As[row][col] = GetElement(Asub, row, col);
        Bs[row][col] = GetElement(Bsub, row, col);
        // Synchronize to make sure the sub-matrices are loaded
        // before starting the computation
        __syncthreads();
        // Multiply Asub and Bsub together
        for (int e = 0; e < BLOCK_SIZE; ++e)
            Cvalue += As[row][e] * Bs[e][col];
        // Synchronize to make sure that the preceding
        // computation is done before loading two new
        // sub-matrices of A and B in the next iteration
        __syncthreads();
    }
    // Write Csub to device memory
    // Each thread writes one element
    SetElement(Csub, row, col, Cvalue);
}

__global__ void naiveKernel(Matrix A, Matrix B, Matrix C)
{
    
    int n = blockIdx.x * blockDim.x + threadIdx.x;
    int m = blockIdx.y * blockDim.y + threadIdx.y;
    int N = A.width;
    int M = B.height;
    int K = A.height;
    if (n < N && m < M){
        float sum = 0;
        for (int k = 0; k < K; k++){
            //sum += A[m*K+k] * B[k*N+n];
            sum = fmaf(A.elements[m*K+k], B.elements[k*N+n], sum);
        }
        C.elements[m*N+n] = sum;
    }
}

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.