Why different shape matrix multiplication have different performance?

I use a matrix A (200 * 50) multiplied by matrix B (30000 * 50) results matrix size is (200 * 30000) and use matrix B (30000 * 50) multiplied by matrix A (200 * 50) result matrix size is (30000200), however, the performance is very different.
A
B only needs 1.62ms, however, B*A needs 6.05ms.
Matrix A and matrix B are stored in the same way, and shared memory is used in the calculation.
The graphics card I am using is Titan Xp.
The functions that my matrix computes are as follows, where aLen represents the number of rows of the matrix A and bLen represent the number of rows of the matrix B. Matrix A and B have the same columns.

__global__
void SMatMulKernel(const float* a, const int aLen, const float* b, const int bLen, float* c){
	int blockRow = blockIdx.x;
	int blockCol = blockIdx.y;
 	int tx = threadIdx.x;
	int ty = threadIdx.y;
 	int cx = blockRow*BLOCK_SIZE + tx;
	int cy = blockCol*BLOCK_SIZE + ty;
 	float cValue = 0;
 	int subNum = (COL_NUM+BLOCK_SIZE-1)/BLOCK_SIZE;
	for (int m=0; m<subNum; ++m){
		int ax = blockRow * BLOCK_SIZE + tx;
		int ay = m * BLOCK_SIZE + ty;
		
		int bx = blockCol * BLOCK_SIZE + tx;
		int by = m * BLOCK_SIZE + ty;
 		__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
		__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
 		As[tx][ty] = getEle(a, ax, ay, aLen); 
		Bs[tx][ty] = getEle(b, bx, by, bLen);
 		__syncthreads();
 		for (int j=0; j<BLOCK_SIZE; ++j){
			cValue += As[tx][j] * Bs[ty][j];
		}m<subNum; ++m){ 		int ax = blockRow * BLOCK_SIZE + tx; 		int ay = m * BLOCK_SIZE + ty; 		 		int bx = blockCol * BLOCK_SIZE + tx; 		int by = m * BLOCK_SIZE + ty;  		__shared__ float As[BLOCK_SIZE][BLOCK_SIZE]; 		__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];  		As[tx][ty] = getEle(a, ax, ay, aLen);  		Bs[tx][ty] = getEle(b, bx, by, bLen);  		__syncthreads();  		for (int j=0; j<BLOCK_SIZE; ++j){ 			cValue += As[tx][j] * Bs[ty][j]; 		} 		__syncthreads(); 	}  	if (cx<aLen && cy<bLen){ 		c[cx*bLen+cy] = cValue; 	} }
		__syncthreads();
	}
 	if (cx<aLen && cy<bLen){
		c[cx*bLen+cy] = cValue;
	}
}

I hope the experts can give a reasonable explanation. Thanks.

I’m not sure this is a well-written code. I’m not sure I would spend much time doing perf analysis on it.

For example this:

c[cx*bLen+cy] = cValue;

will create uncoalesced access.

You can find what I believe is a better code in the programming guide that does a similar thing:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

I would use that as a starting point.

When I run a test similar to what you described, using that code, I see no significant difference:

$ cat t281.cu
#include <iostream>
#define BLOCK_SIZE 16

// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {
    int width;
    int height;
    int stride;
    float* elements;
} Matrix;

// Get a matrix element
__device__ float GetElement(const Matrix A, int row, int col)
{
    return A.elements[row * A.stride + col];
}

// Set a matrix element
__device__ void SetElement(Matrix A, int row, int col,
                           float value)
{
    A.elements[row * A.stride + col] = value;
}

// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is
// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
 __device__ Matrix GetSubMatrix(Matrix A, int row, int col)
{
    Matrix Asub;
    Asub.width    = BLOCK_SIZE;
    Asub.height   = BLOCK_SIZE;
    Asub.stride   = A.stride;
    Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row
                                         + BLOCK_SIZE * col];
    return Asub;
}

// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);

// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
    // Load A and B to device memory
    Matrix d_A;
    d_A.width = d_A.stride = A.width; d_A.height = A.height;
    size_t size = A.width * A.height * sizeof(float);
    cudaMalloc(&d_A.elements, size);
    cudaMemcpy(d_A.elements, A.elements, size,
               cudaMemcpyHostToDevice);
    Matrix d_B;
    d_B.width = d_B.stride = B.width; d_B.height = B.height;
    size = B.width * B.height * sizeof(float);
    cudaMalloc(&d_B.elements, size);
    cudaMemcpy(d_B.elements, B.elements, size,
    cudaMemcpyHostToDevice);

    // Allocate C in device memory
    Matrix d_C;
    d_C.width = d_C.stride = C.width; d_C.height = C.height;
    size = C.width * C.height * sizeof(float);
    cudaMalloc(&d_C.elements, size);

    // Invoke kernel
    dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
    dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
    MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);

    // Read C from device memory
    cudaMemcpy(C.elements, d_C.elements, size,
               cudaMemcpyDeviceToHost);

    // Free device memory
    cudaFree(d_A.elements);
    cudaFree(d_B.elements);
    cudaFree(d_C.elements);
}

// Matrix multiplication kernel called by MatMul()
 __global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{
    // Block row and column
    int blockRow = blockIdx.y;
    int blockCol = blockIdx.x;

    // Each thread block computes one sub-matrix Csub of C
    Matrix Csub = GetSubMatrix(C, blockRow, blockCol);

    // Each thread computes one element of Csub
    // by accumulating results into Cvalue
    float Cvalue = 0;

    // Thread row and column within Csub
    int row = threadIdx.y;
    int col = threadIdx.x;

    // Loop over all the sub-matrices of A and B that are
    // required to compute Csub
    // Multiply each pair of sub-matrices together
    // and accumulate the results
    for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {

        // Get sub-matrix Asub of A
        Matrix Asub = GetSubMatrix(A, blockRow, m);

        // Get sub-matrix Bsub of B
        Matrix Bsub = GetSubMatrix(B, m, blockCol);

        // Shared memory used to store Asub and Bsub respectively
        __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
        __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

        // Load Asub and Bsub from device memory to shared memory
        // Each thread loads one element of each sub-matrix
        As[row][col] = GetElement(Asub, row, col);
        Bs[row][col] = GetElement(Bsub, row, col);

        // Synchronize to make sure the sub-matrices are loaded
        // before starting the computation
        __syncthreads();
        // Multiply Asub and Bsub together
        for (int e = 0; e < BLOCK_SIZE; ++e)
            Cvalue += As[row][e] * Bs[e][col];

        // Synchronize to make sure that the preceding
        // computation is done before loading two new
        // sub-matrices of A and B in the next iteration
        __syncthreads();
    }

    // Write Csub to device memory
    // Each thread writes one element
    SetElement(Csub, row, col, Cvalue);
}

int main(){
#ifndef ALT
  int m = 3200;
  int k = 256;
#else
  int m = 256;
  int k = 3200;
#endif
  int n = 64;

  Matrix A,B,C;
  A.width = A.stride = n;
  A.height = m;
  A.elements = new float[A.width*A.height];
  B.width = B.stride = k;
  B.height = n;
  B.elements = new float[B.width*B.height];
  C.width = C.stride = k;
  C.height = m;
  C.elements = new float[C.width*C.height];
  MatMul(A, B, C);
  return 0;
}
$ nvcc -arch=sm_52 -lineinfo -o t281 t281.cu
$ cuda-memcheck ./t281
========= CUDA-MEMCHECK
========= ERROR SUMMARY: 0 errors
$ nvprof ./t281
==1735== NVPROF is profiling process 1735, command: ./t281
==1735== Profiling application: ./t281
==1735== Profiling result:
            Type  Time(%)      Time     Calls       Avg       Min       Max  Name
 GPU activities:   81.78%  4.0170ms         1  4.0170ms  4.0170ms  4.0170ms  [CUDA memcpy DtoH]
                   10.60%  520.52us         2  260.26us  29.664us  490.85us  [CUDA memcpy HtoD]
                    <b>7.63%  374.60us         1  374.60us  374.60us  374.60us  MatMulKernel(Matrix, Matrix, Matrix</b>)
      API calls:   96.84%  243.29ms         3  81.098ms  257.74us  242.51ms  cudaMalloc
                    2.57%  6.4602ms         3  2.1534ms  68.316us  5.9930ms  cudaMemcpy
                    0.26%  653.75us         3  217.92us  188.27us  269.12us  cudaFree
                    0.21%  532.88us        94  5.6680us     290ns  230.81us  cuDeviceGetAttribute
                    0.04%  106.85us         1  106.85us  106.85us  106.85us  cuDeviceTotalMem
                    0.04%  95.200us         1  95.200us  95.200us  95.200us  cuDeviceGetName
                    0.03%  67.151us         1  67.151us  67.151us  67.151us  cudaLaunch
                    0.00%  8.8550us         3  2.9510us     320ns  7.7800us  cudaSetupArgument
                    0.00%  7.3150us         3  2.4380us     345ns  5.6450us  cuDeviceGetCount
                    0.00%  4.2050us         2  2.1020us     570ns  3.6350us  cuDeviceGet
                    0.00%  1.6750us         1  1.6750us  1.6750us  1.6750us  cudaConfigureCall
$ nvcc -arch=sm_52 -lineinfo -o t281 t281.cu -DALT
$ cuda-memcheck ./t281
========= CUDA-MEMCHECK
========= ERROR SUMMARY: 0 errors
[bob@fed20 misc]$ nvprof ./t281
==1793== NVPROF is profiling process 1793, command: ./t281
==1793== Profiling application: ./t281
==1793== Profiling result:
            Type  Time(%)      Time     Calls       Avg       Min       Max  Name
 GPU activities:   81.76%  4.0408ms         1  4.0408ms  4.0408ms  4.0408ms  [CUDA memcpy DtoH]
                   10.53%  520.62us         2  260.31us  29.633us  490.98us  [CUDA memcpy HtoD]
                    <b>7.70%  380.65us         1  380.65us  380.65us  380.65us  MatMulKernel(Matrix, Matrix, Matrix)</b>
      API calls:   96.76%  239.13ms         3  79.711ms  249.00us  238.36ms  cudaMalloc
                    2.63%  6.5034ms         3  2.1678ms  83.395us  6.0414ms  cudaMemcpy
                    0.26%  651.52us         3  217.17us  186.20us  271.97us  cudaFree
                    0.22%  532.88us        94  5.6680us     295ns  231.78us  cuDeviceGetAttribute
                    0.06%  143.31us         1  143.31us  143.31us  143.31us  cuDeviceGetName
                    0.04%  89.436us         1  89.436us  89.436us  89.436us  cuDeviceTotalMem
                    0.03%  66.992us         1  66.992us  66.992us  66.992us  cudaLaunch
                    0.00%  9.1650us         3  3.0550us     345ns  7.9650us  cudaSetupArgument
                    0.00%  6.3650us         3  2.1210us     340ns  4.6700us  cuDeviceGetCount
                    0.00%  4.1450us         2  2.0720us     465ns  3.6800us  cuDeviceGet
                    0.00%  1.8850us         1  1.8850us  1.8850us  1.8850us  cudaConfigureCall
$

Fedora 20, CUDA 9.1, GTX 960

Note that if you are actually interested in the fastest performance matrix multiply, I encourage you to use cublas, not this naive kernel. I assume this is for learning purposes.

Thank you for your patience and meticulous answer. Your answer is very helpful to me.