thanks chris,
I am following the code in jpegNPP sample to encode the buffer data to jpeg. but I’ve no idea how to fit the NV21 data into the apDstImage, so I pick the data from nppiNV12ToRGB_8u_P2C3R get RGB frame anf convert to YUV to encode it to jpeg. but I ended up with a disorder output. any thing wrong?
refer to some others’work,my code is here :
int jpegNPP(Npp8u* d_srcRGB, int img_width, int img_height)
{
NppiDCTState *pDCTState;
CHECK_NPP_STATUS(nppiDCTInitAlloc(&pDCTState),"");
// Parsing and Huffman Decoding (on host)
FrameHeader oFrameHeader;
QuantizationTable aQuantizationTables[4];
Npp8u *pdQuantizationTables;
cudaMalloc(&pdQuantizationTables, 64 * 4);
HuffmanTable aHuffmanTables[4];
HuffmanTable *pHuffmanDCTables = aHuffmanTables;
HuffmanTable *pHuffmanACTables = &aHuffmanTables[2];
ScanHeader oScanHeader;
memset(&oFrameHeader,0,sizeof(FrameHeader));
memset(aQuantizationTables,0, 4 * sizeof(QuantizationTable));
memset(aHuffmanTables,0, 4 * sizeof(HuffmanTable));
int nMCUBlocksH = 0;
int nMCUBlocksV = 0;
int nRestartInterval = -1;
NppiSize aSrcSize[3];
Npp16s *apdDCT[3] = {0,0,0};
Npp32s aDCTStep[3];
Npp8u *apSrcImage[3] = {0,0,0};
Npp32s aSrcImageStep[3];
size_t aSrcPitch[3];
/***************************
*
* Output
*
***************************/
unsigned char STD_DC_Y_NRCODES[16] = { 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
unsigned char STD_DC_Y_VALUES[12] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
unsigned char STD_DC_UV_NRCODES[16] = { 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
unsigned char STD_DC_UV_VALUES[12] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
unsigned char STD_AC_Y_NRCODES[16] = { 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0X7D };
unsigned char STD_AC_Y_VALUES[162] =
{
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa
};
unsigned char STD_AC_UV_NRCODES[16] = { 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0X77 };
unsigned char STD_AC_UV_VALUES[162] =
{
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa
};
aHuffmanTables[0].nClassAndIdentifier = 0;
memcpy(aHuffmanTables[0].aCodes, STD_DC_Y_NRCODES, 16);
memcpy(aHuffmanTables[0].aTable, STD_DC_Y_VALUES, 12);
aHuffmanTables[1].nClassAndIdentifier = 1;
memcpy(aHuffmanTables[1].aCodes, STD_DC_UV_NRCODES, 16);
memcpy(aHuffmanTables[1].aTable, STD_DC_UV_VALUES, 12);
aHuffmanTables[2].nClassAndIdentifier = 16;
memcpy(aHuffmanTables[2].aCodes, STD_AC_Y_NRCODES, 16);
memcpy(aHuffmanTables[2].aTable, STD_AC_Y_VALUES, 162);
aHuffmanTables[3].nClassAndIdentifier = 17;
memcpy(aHuffmanTables[3].aCodes, STD_AC_UV_NRCODES, 16);
memcpy(aHuffmanTables[3].aTable, STD_AC_UV_VALUES, 162);
unsigned char std_Y_QT[64] =
{
16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68, 109, 103, 77,
24, 35, 55, 64, 81, 104, 113, 92,
49, 64, 78, 87, 103, 121, 120, 101,
72, 92, 95, 98, 112, 100, 103, 99
};
unsigned char std_UV_QT[64] =
{
17, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 66, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99
};
aQuantizationTables[0].nPrecisionAndIdentifier = 0;
memcpy(aQuantizationTables[0].aTable, std_Y_QT, 64);
aQuantizationTables[1].nPrecisionAndIdentifier = 1;
memcpy(aQuantizationTables[1].aTable, std_UV_QT, 64);
CHECK_NPP_STATUS(cudaMemcpyAsync(pdQuantizationTables , aQuantizationTables[0].aTable, 64, cudaMemcpyHostToDevice),"");
CHECK_NPP_STATUS(cudaMemcpyAsync(pdQuantizationTables + 64, aQuantizationTables[1].aTable, 64, cudaMemcpyHostToDevice),"");
//填充帧头
oFrameHeader.nSamplePrecision = 8;
oFrameHeader.nComponents = 3;
oFrameHeader.aComponentIdentifier[0] = 1;
oFrameHeader.aComponentIdentifier[1] = 2;
oFrameHeader.aComponentIdentifier[2] = 3;
oFrameHeader.aSamplingFactors[0] = 34;
oFrameHeader.aSamplingFactors[1] = 17;
oFrameHeader.aSamplingFactors[2] = 17;
oFrameHeader.aQuantizationTableSelector[0] = 0;
oFrameHeader.aQuantizationTableSelector[1] = 1;
oFrameHeader.aQuantizationTableSelector[2] = 1;
oFrameHeader.nWidth = img_width;
oFrameHeader.nHeight = img_height;
for (int i = 0; i < oFrameHeader.nComponents; ++i)
{
nMCUBlocksV = max(nMCUBlocksV, oFrameHeader.aSamplingFactors[i] & 0x0f);
nMCUBlocksH = max(nMCUBlocksH, oFrameHeader.aSamplingFactors[i] >> 4);
}
for (int i = 0; i < oFrameHeader.nComponents; ++i)
{
NppiSize oBlocks;
NppiSize oBlocksPerMCU = { oFrameHeader.aSamplingFactors[i] >> 4, oFrameHeader.aSamplingFactors[i] & 0x0f };
oBlocks.width = (int)ceil((oFrameHeader.nWidth + 7) / 8 *
static_cast<float>(oBlocksPerMCU.width) / nMCUBlocksH);
oBlocks.width = DivUp(oBlocks.width, oBlocksPerMCU.width) * oBlocksPerMCU.width;
oBlocks.height = (int)ceil((oFrameHeader.nHeight + 7) / 8 *
static_cast<float>(oBlocksPerMCU.height) / nMCUBlocksV);
oBlocks.height = DivUp(oBlocks.height, oBlocksPerMCU.height) * oBlocksPerMCU.height;
aSrcSize[i].width = oBlocks.width * 8;
aSrcSize[i].height = oBlocks.height * 8;
// Allocate Memory
size_t nPitch;
CHECK_NPP_STATUS(cudaMallocPitch(&apdDCT[i], &nPitch, oBlocks.width * 64 * sizeof(Npp16s), oBlocks.height),"");
aDCTStep[i] = static_cast<Npp32s>(nPitch);
CHECK_NPP_STATUS(cudaMallocPitch(&apSrcImage[i], &nPitch, aSrcSize[i].width, aSrcSize[i].height),"");
aSrcPitch[i] = nPitch;
aSrcImageStep[i] = static_cast<Npp32s>(nPitch);
}
//RGB2YUV
cudaError_t cudaStatus;
cudaStatus = cuda_common::RGB2YUV(d_srcRGB, img_width, img_height,
apSrcImage[0], aSrcPitch[0], aSrcSize[0].width, aSrcSize[0].height,
apSrcImage[1], aSrcPitch[1], aSrcSize[1].width, aSrcSize[1].height,
apSrcImage[2], aSrcPitch[2], aSrcSize[2].width, aSrcSize[2].height);
/**
* Forward DCT, quantization and level shift part of the JPEG encoding.
* Input is expected in 8x8 macro blocks and output is expected to be in 64x1
* macro blocks. The new version of the primitive takes the ROI in image pixel size and
* works with DCT coefficients that are in zig-zag order.
*/
int k = 0;
CHECK_NPP_STATUS(nppiDCTQuantFwd8x8LS_JPEG_8u16s_C1R_NEW(apSrcImage[0], aSrcImageStep[0],
apdDCT[0], aDCTStep[0],
pdQuantizationTables + k * 64,
aSrcSize[0],
pDCTState),"");
k = 1;
CHECK_NPP_STATUS(nppiDCTQuantFwd8x8LS_JPEG_8u16s_C1R_NEW(apSrcImage[1], aSrcImageStep[1],
apdDCT[1], aDCTStep[1],
pdQuantizationTables + k * 64,
aSrcSize[1],
pDCTState),"");
CHECK_NPP_STATUS(nppiDCTQuantFwd8x8LS_JPEG_8u16s_C1R_NEW(apSrcImage[2], aSrcImageStep[2],
apdDCT[2], aDCTStep[2],
pdQuantizationTables + k * 64,
aSrcSize[2],
pDCTState),"");
// Huffman Encoding
Npp8u *pdScan;
Npp32s nScanLength;
CHECK_NPP_STATUS(cudaMalloc(&pdScan, 4 << 20),"");
Npp8u *pJpegEncoderTemp;
size_t nTempSize;
CHECK_NPP_STATUS(nppiEncodeHuffmanGetSize(aSrcSize[0], 3, &nTempSize),"");
CHECK_NPP_STATUS(cudaMalloc(&pJpegEncoderTemp, nTempSize),"");
NppiEncodeHuffmanSpec *apHuffmanDCTable[3];
NppiEncodeHuffmanSpec *apHuffmanACTable[3];
/**
* Allocates memory and creates a Huffman table in a format that is suitable for the encoder.
*/
NppStatus t_status ;
t_status = nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanDCTables[0].aCodes, nppiDCTable, &apHuffmanDCTable[0]);
t_status = nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanACTables[0].aCodes, nppiACTable, &apHuffmanACTable[0]);
t_status = nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanDCTables[1].aCodes, nppiDCTable, &apHuffmanDCTable[1]);
t_status = nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanACTables[1].aCodes, nppiACTable, &apHuffmanACTable[1]);
t_status = nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanDCTables[1].aCodes, nppiDCTable, &apHuffmanDCTable[2]);
t_status = nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanACTables[1].aCodes, nppiACTable, &apHuffmanACTable[2]);
/**
* Huffman Encoding of the JPEG Encoding.
* Input is expected to be 64x1 macro blocks and output is expected as byte stuffed huffman encoded JPEG scan.
*/
Npp32s nSs = 0;
Npp32s nSe = 63;
Npp32s nH = 0;
Npp32s nL = 0;
CHECK_NPP_STATUS(nppiEncodeHuffmanScan_JPEG_8u16s_P3R(apdDCT, aDCTStep,
0, nSs, nSe, nH, nL,
pdScan, &nScanLength,
apHuffmanDCTable,
apHuffmanACTable,
aSrcSize,
pJpegEncoderTemp),"");
for (int i = 0; i < 3; ++i)
{
nppiEncodeHuffmanSpecFree_JPEG(apHuffmanDCTable[i]);
nppiEncodeHuffmanSpecFree_JPEG(apHuffmanACTable[i]);
}
// Write JPEG
unsigned char *pDstJpeg = new unsigned char[4 << 20];
unsigned char *pDstOutput = pDstJpeg;
writeMarker(0x0D8, pDstOutput);
writeJFIFTag(pDstOutput);
writeQuantizationTable(aQuantizationTables[0], pDstOutput);
writeQuantizationTable(aQuantizationTables[1], pDstOutput);
writeFrameHeader(oFrameHeader, pDstOutput);
writeHuffmanTable(pHuffmanDCTables[0], pDstOutput);
writeHuffmanTable(pHuffmanACTables[0], pDstOutput);
writeHuffmanTable(pHuffmanDCTables[1], pDstOutput);
writeHuffmanTable(pHuffmanACTables[1], pDstOutput);
oScanHeader.nComponents = 3;
oScanHeader.aComponentSelector[0] = 1;
oScanHeader.aComponentSelector[1] = 2;
oScanHeader.aComponentSelector[2] = 3;
oScanHeader.aHuffmanTablesSelector[0] = 0;
oScanHeader.aHuffmanTablesSelector[1] = 17;
oScanHeader.aHuffmanTablesSelector[2] = 17;
oScanHeader.nSs = 0;
oScanHeader.nSe = 63;
oScanHeader.nA = 0;
writeScanHeader(oScanHeader, pDstOutput);
CHECK_NPP_STATUS(cudaMemcpy(pDstOutput, pdScan, nScanLength, cudaMemcpyDeviceToHost),"");
pDstOutput += nScanLength;
writeMarker(0x0D9, pDstOutput);
{
// Write result to file.
char* szOutputFile ="output.jpeg";
std::ofstream outputFile(szOutputFile, ios::out | ios::binary);
outputFile.write(reinterpret_cast<const char *>(pDstJpeg), static_cast<int>(pDstOutput - pDstJpeg));
}
// Cleanup
delete [] pDstJpeg;
cudaFree(pJpegEncoderTemp);
cudaFree(pdQuantizationTables);
cudaFree(pdScan);
nppiDCTFree(pDCTState);
for (int i = 0; i < 3; ++i)
{
cudaFree(apdDCT[i]);
cudaFree(apSrcImage[i]);
}
return EXIT_SUCCESS;
}