Hello @AastaLLL,
Please find the UFF parser log below:
Converting to UFF graph
Warning: keep_dims is not supported, ignoring…
Warning: No conversion function registered for layer: Square yet.
Converting as custom op Square embeddings/Square
name: “embeddings/Square”
op: “Square”
input: “InceptionResnetV1/Bottleneck/BatchNorm/batchnorm/add_1”
attr {
key: “T”
value {
type: DT_FLOAT
}
}
Traceback (most recent call last):
File “Desktop/facenet_graph.py”, line 29, in
uff_model = uff.from_tensorflow(tf_model, [“embeddings”])
File “/home/ovuser/tensorflow/local/lib/python2.7/site-packages/uff/converters/tensorflow/conversion_helpers.py”, line 75, in from_tensorflow
name=“main”)
File “/home/ovuser/tensorflow/local/lib/python2.7/site-packages/uff/converters/tensorflow/converter.py”, line 64, in convert_tf2uff_graph
uff_graph, input_replacements)
File “/home/ovuser/tensorflow/local/lib/python2.7/site-packages/uff/converters/tensorflow/converter.py”, line 51, in convert_tf2uff_node
op, name, tf_node, inputs, uff_graph, tf_nodes=tf_nodes)
File “/home/ovuser/tensorflow/local/lib/python2.7/site-packages/uff/converters/tensorflow/converter.py”, line 28, in convert_layer
fields = cls.parse_tf_attrs(tf_node.attr)
File “/home/ovuser/tensorflow/local/lib/python2.7/site-packages/uff/converters/tensorflow/converter.py”, line 177, in parse_tf_attrs
for key, val in attrs.items()}
File “/home/ovuser/tensorflow/local/lib/python2.7/site-packages/uff/converters/tensorflow/converter.py”, line 177, in
for key, val in attrs.items()}
File “/home/ovuser/tensorflow/local/lib/python2.7/site-packages/uff/converters/tensorflow/converter.py”, line 172, in parse_tf_attr_value
return cls.convert_tf2uff_field(code, val)
File “/home/ovuser/tensorflow/local/lib/python2.7/site-packages/uff/converters/tensorflow/converter.py”, line 146, in convert_tf2uff_field
return TensorFlowToUFFConverter.convert_tf2numpy_dtype(val)
File “/home/ovuser/tensorflow/local/lib/python2.7/site-packages/uff/converters/tensorflow/converter.py”, line 74, in convert_tf2numpy_dtype
return np.dtype(dt[dtype])
TypeError: list indices must be integers, not AttrValue
I can understand that there is no support for some of the layers such as square, etc., But I need this to happen. Is there a way I can make this conversion to TensorRT engine myself? If so, could you please assist me in doing so?