Thank you @JerryChang the videos helped a lot. Have modified some parameters based on that, however, we are still getting the same error:
3.236413] ov5693 2-0036: probing v4l2 sensor.
[ 3.236463] ov5693 2-0036: Failed to find clocks
[ 3.242868] ov5693 2-0036: unable to get platform data
[ 3.251147] ov5693 2-0036: tegra camera driver registration failed
PFB our tegra186-camera-e3326-a00.dtsi file
/*
* Copyright (c) 2015-2020, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/ {
host1x {
vi@15700000 {
num-channels = <1>;
ports {
#address-cells = <1>;
#size-cells = <0>;
port@0 {
reg = <0>;
e3326_vi_in0: endpoint {
port-index = <0>;
bus-width = <2>;
remote-endpoint = <&e3326_csi_out0>;
};
};
};
};
nvcsi@150c0000 {
num-channels = <1>;
#address-cells = <1>;
#size-cells = <0>;
channel@0 {
reg = <0>;
ports {
#address-cells = <1>;
#size-cells = <0>;
port@0 {
reg = <0>;
e3326_csi_in0: endpoint@0 {
port-index = <0>;
bus-width = <2>;
remote-endpoint = <&e3326_ov5693_out0>;
};
};
port@1 {
reg = <1>;
e3326_csi_out0: endpoint@1 {
remote-endpoint = <&e3326_vi_in0>;
};
};
};
};
};
};
i2c@3180000 {
ov5693_c@36 {
compatible = "nvidia,ov5693";
/* I2C device address */
reg = <0x36>;
/* V4L2 device node location */
devnode = "video0";
/* Physical dimensions of sensor */
physical_w = "3.674";
physical_h = "2.738";
/* Define any required hw resources needed by driver */
/* ie. clocks, io pins, power sources */
avdd-reg = "vana";
iovdd-reg = "vif";
/* Sensor output flip settings */
vertical-flip = "true";
/* Enable EEPROM support */
has-eeprom = "0";
mode0 { // OV5693_MODE_2592X1944
mclk_khz = "24000";
num_lanes = "2";
tegra_sinterface = "serial_a";
phy_mode = "DPHY";
discontinuous_clk = "yes";
dpcm_enable = "false";
cil_settletime = "0";
active_w = "3264";
active_h = "2464";
mode_type = "bayer";
pixel_phase = "rggb";
csi_pixel_bit_depth = "10";
readout_orientation = "90";
line_length = "3448";
inherent_gain = "1";
mclk_multiplier = "6.67";
pix_clk_hz = "182400000";
gain_factor = "10";
min_gain_val = "10";/* 1DB*/
max_gain_val = "160";/* 16DB*/
step_gain_val = "1";
default_gain = "10";
min_hdr_ratio = "1";
max_hdr_ratio = "1";
framerate_factor = "1000000";
min_framerate = "2000000";/*1.816577 */
max_framerate = "21000000";/*30*/
step_framerate = "1";
default_framerate = "30000000";
exposure_factor = "1000000";
min_exp_time = "13";/* us */
max_exp_time = "683709";/* us */
step_exp_time = "1";
default_exp_time = "33334";/* us */
embedded_metadata_height = "2";
};
ports {
#address-cells = <1>;
#size-cells = <0>;
port@0 {
reg = <0>;
e3326_ov5693_out0: endpoint {
port-index = <0>;
bus-width = <2>;
remote-endpoint = <&e3326_csi_in0>;
};
};
};
};
};
e3326_lens_ov5693@P5V27C {
min_focus_distance = "0.0";
hyper_focal = "0.0";
focal_length = "2.67";
f_number = "2.0";
aperture = "2.0";
};
tegra-camera-platform {
compatible = "nvidia, tegra-camera-platform";
/**
* Physical settings to calculate max ISO BW
*
* num_csi_lanes = <>;
* Total number of CSI lanes when all cameras are active
*
* max_lane_speed = <>;
* Max lane speed in Kbit/s
*
* min_bits_per_pixel = <>;
* Min bits per pixel
*
* vi_peak_byte_per_pixel = <>;
* Max byte per pixel for the VI ISO case
*
* vi_bw_margin_pct = <>;
* Vi bandwidth margin in percentage
*
* max_pixel_rate = <>;
* Max pixel rate in Kpixel/s for the ISP ISO case
*
* isp_peak_byte_per_pixel = <>;
* Max byte per pixel for the ISP ISO case
*
* isp_bw_margin_pct = <>;
* Isp bandwidth margin in percentage
*/
num_csi_lanes = <2>;
max_lane_speed = <1500000>;
min_bits_per_pixel = <10>;
vi_peak_byte_per_pixel = <2>;
vi_bw_margin_pct = <25>;
max_pixel_rate = <160000>;
isp_peak_byte_per_pixel = <5>;
isp_bw_margin_pct = <25>;
/**
* The general guideline for naming badge_info contains 3 parts, and is as follows,
* The first part is the camera_board_id for the module; if the module is in a FFD
* platform, then use the platform name for this part.
* The second part contains the position of the module, ex. “rear” or “front”.
* The third part contains the last 6 characters of a part number which is found
* in the module's specsheet from the vender.
*/
modules {
module0 {
badge = "e3326_front_P5V27C";
position = "rear";
orientation = "1";
drivernode0 {
/* Declare PCL support driver (classically known as guid) */
pcl_id = "v4l2_sensor";
/* Driver v4l2 device name */
devname = "ov5693 2-0036";
/* Declare the device-tree hierarchy to driver instance */
proc-device-tree = "/proc/device-tree/i2c@3180000/ov5693_c@36";
};
drivernode1 {
/* Declare PCL support driver (classically known as guid) */
pcl_id = "v4l2_lens";
proc-device-tree = "/proc/device-tree/e3326_lens_ov5693@P5V27C/";
};
};
};
};
};
With reference to this post How to grab pre-configured csi video stream without I2C? - #7 by DaLT, and “sensor software design programming guide” we need to set status=“okay” if we are not using i2c, I have not declared the status= “okay”, is that causing the problem?
Where exactly should I add status=“okay” in tegra186-camera-e3326-a00.dtsi?
Is the below code correct?
/ {
host1x {
vi@15700000 {
status="okay";
num-channels = <1>;
ports {
#address-cells = <1>;
#size-cells = <0>;
port@0 {
reg = <0>;
e3326_vi_in0: endpoint {
port-index = <0>;
bus-width = <2>;
remote-endpoint = <&e3326_csi_out0>;
};
};
};
};
or do i need to set status="okay " somewhere else also?