Please provide complete information as applicable to your setup.
• Hardware Platform (Jetson / GPU) GPU T4
• DeepStream Version 5.0.1
• JetPack Version (valid for Jetson only)
• TensorRT Version TRT 7.0.0
• NVIDIA GPU Driver Version (valid for GPU only) 455.45.01
• Issue Type( questions, new requirements, bugs) Question
• How to reproduce the issue ? (This is for bugs. Including which sample app is using, the configuration files content, the command line used and other details for reproducing)
################################################################################
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
################################################################################
[application]
enable-perf-measurement=1
perf-measurement-interval-sec=60
#gie-kitti-output-dir=streamscl
[tiled-display]
enable=1
rows=3
columns=3
width=1280
height=720
gpu-id=0
#(0): nvbuf-mem-default - Default memory allocated, specific to particular platform
#(1): nvbuf-mem-cuda-pinned - Allocate Pinned/Host cuda memory, applicable for Tesla
#(2): nvbuf-mem-cuda-device - Allocate Device cuda memory, applicable for Tesla
#(3): nvbuf-mem-cuda-unified - Allocate Unified cuda memory, applicable for Tesla
#(4): nvbuf-mem-surface-array - Allocate Surface Array memory, applicable for Jetson
nvbuf-memory-type=0
[source0]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=4
uri=rtsp:
gpu-id=0
rtsp-reconnect-interval-sec=60
cudadec-memtype=0
[source1]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=4
uri=rtsp://
rtsp-reconnect-interval-sec=60
gpu-id=0
cudadec-memtype=0
[source2]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=4
uri=rtsp://
rtsp-reconnect-interval-sec=60
gpu-id=0
cudadec-memtype=0
[source3]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=4
uri=rtsp:
rtsp-reconnect-interval-sec=600000
gpu-id=0
cudadec-memtype=0
[source4]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=4
uri=rtsp://
rtsp-reconnect-interval-sec=60
gpu-id=0
cudadec-memtype=0
[source5]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=4
uri=rtsp://
rtsp-reconnect-interval-sec=60
gpu-id=0
cudadec-memtype=0
[source13]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=4
uri=rtsp://
rtsp-reconnect-interval-sec=60
gpu-id=0
cudadec-memtype=0
[source14]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=4
uri=rtsp://
rtsp-reconnect-interval-sec=60
gpu-id=0
cudadec-memtype=0
[sink0]
enable=1
#Type - 1=FakeSink 2=EglSink 3=File
type=1
sync=0
source-id=0
gpu-id=0
nvbuf-memory-type=0
#1=mp4 2=mkv
#container=1
#1=h264 2=h265
#codec=1
#output-file=yolov4.mp4
#DEPLOYMENT WITH AZURE
[sink1]
enable=1
#Type - 1=FakeSink 2=EglSink 3=File 4=UDPSink 5=nvoverlaysink 6=MsgConvBroker
type=6
msg-conv-config=naming_conv_iotedge.txt
#(0): PAYLOAD_DEEPSTREAM - Deepstream schema payload
#(1): PAYLOAD_DEEPSTREAM_MINIMAL - Deepstream schema payload minimal
msg-conv-payload-type=1
msg-broker-proto-lib=/opt/nvidia/deepstream/deepstream/lib/libnvds_azure_edge_proto.so
#msg-broker-conn-str=localhost;5672;guest;guest
topic=mytopic
#RTSP output to see analytics
[sink2]
enable=1
#Type - 1=FakeSink 2=EglSink 3=File
type=4
sync=0
source-id=0
gpu-id=0
nvbuf-memory-type=0
codec=2
bitrate=4000000
iframeinterval=10
rtsp-port=8554
profile=0
udp-buffer-size=100000
[osd]
enable=1
gpu-id=0
border-width=2
text-size=12
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Serif
show-clock=0
clock-x-offset=800
clock-y-offset=820
clock-text-size=12
clock-color=1;0;0;0
nvbuf-memory-type=0
[streammux]
gpu-id=0
##Boolean property to inform muxer that sources are live
live-source=2
batch-size=8
##time out in usec, to wait after the first buffer is available
##to push the batch even if the complete batch is not formed
batched-push-timeout=40000
width=1280
height=720
enable-padding=0
nvbuf-memory-type=0
[primary-gie]
enable=1
gpu-id=0
labelfile-path=labels.txt
batch-size=8
force-implicit-batch-dim=1
#Required by the app for OSD, not a plugin property
bbox-border-color0=1;0;0;1
bbox-border-color1=0;1;1;1
bbox-border-color2=0;0;1;1
bbox-border-color3=0;1;0;1
interval=2
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yoloV4.txt
[tracker]
enable=1
tracker-width=640
tracker-height=480
gpu-id=0
#ll-lib-file=/opt/nvidia/deepstream/deepstream-5.0/lib/libnvds_mot_klt.so
ll-lib-file=/opt/nvidia/deepstream/deepstream-5.0/lib/libnvds_nvdcf.so
ll-config-file=tracker_config.yml
enable-batch-process=1
[nvds-analytics]
enable=1
config-file=analytics_line.txt
I am using deepstream app with the above settings and when its run without -t (to display info on rtsp) it works fine but once I add that option it keeps flickering grey and its stops and starts on the rtsp stream using t4. I have tried it using another site with rtx2700 and it is fine, no issues. Is there something I need to do with T4? It shows the following on nvidia-smi:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 455.45.01 Driver Version: 455.45.01 CUDA Version: 11.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 On | 00000000:3B:00.0 Off | 0 |
| N/A 61C P0 42W / 70W | 2794MiB / 15109MiB | 64% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 1716 G /usr/lib/xorg/Xorg 4MiB |
| 0 N/A N/A 3020 G /usr/lib/xorg/Xorg 4MiB |
| 0 N/A N/A 25595 C ...est/src/ddi-labs-hydrogen 2654MiB
Note downloaded CUDA 10.2 so ignore 11.1 shwon in nvidia-smi.
Doesn’t appear to be at the limit or dropping frames so not sure.