Hello, I’m trying to run one of the samples from deepstream, but I’m getting the following error:
/opt/nvidia/deepstream/deepstream-6.0/samples/configs/deepstream-app$ sudo deepstream-app -c source2_1080p_dec_infer-resnet_demux_int8.txt
WARNING: [TRT]: Using an engine plan file across different models of devices is not recommended and is likely to affect performance or even cause errors.
ERROR: [TRT]: 1: [executionResources.cpp::setTacticSources::156] Error Code 1: Cudnn (Could not initialize cudnn, please check cudnn installation.)
ERROR: [TRT]: 4: [runtime.cpp::deserializeCudaEngine::50] Error Code 4: Internal Error (Engine deserialization failed.)
ERROR: Deserialize engine failed from file: /opt/nvidia/deepstream/deepstream-6.0/samples/models/Primary_Detector/resnet10.caffemodel_b1_gpu0_fp16.engine
0:00:04.073357256 8204 0x8ac3a90 WARN nvinfer gstnvinfer.cpp:635:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::deserializeEngineAndBackend() <nvdsinfer_context_impl.cpp:1889> [UID = 1]: deserialize engine from file :/opt/nvidia/deepstream/deepstream-6.0/samples/models/Primary_Detector/resnet10.caffemodel_b1_gpu0_fp16.engine failed
0:00:04.074664226 8204 0x8ac3a90 WARN nvinfer gstnvinfer.cpp:635:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::generateBackendContext() <nvdsinfer_context_impl.cpp:1996> [UID = 1]: deserialize backend context from engine from file :/opt/nvidia/deepstream/deepstream-6.0/samples/models/Primary_Detector/resnet10.caffemodel_b1_gpu0_fp16.engine failed, try rebuild
0:00:04.074727874 8204 0x8ac3a90 INFO nvinfer gstnvinfer.cpp:638:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::buildModel() <nvdsinfer_context_impl.cpp:1914> [UID = 1]: Trying to create engine from model files
WARNING: INT8 not supported by platform. Trying FP16 mode.
ERROR: [TRT]: 1: [executionResources.cpp::setTacticSources::156] Error Code 1: Cudnn (Could not initialize cudnn, please check cudnn installation.)
ERROR: Build engine failed from config file
ERROR: failed to build trt engine.
0:00:04.670118768 8204 0x8ac3a90 ERROR nvinfer gstnvinfer.cpp:632:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Error in NvDsInferContextImpl::buildModel() <nvdsinfer_context_impl.cpp:1934> [UID = 1]: build engine file failed
0:00:04.672103470 8204 0x8ac3a90 ERROR nvinfer gstnvinfer.cpp:632:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Error in NvDsInferContextImpl::generateBackendContext() <nvdsinfer_context_impl.cpp:2020> [UID = 1]: build backend context failed
0:00:04.672256027 8204 0x8ac3a90 ERROR nvinfer gstnvinfer.cpp:632:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Error in NvDsInferContextImpl::initialize() <nvdsinfer_context_impl.cpp:1257> [UID = 1]: generate backend failed, check config file settings
0:00:04.672326290 8204 0x8ac3a90 WARN nvinfer gstnvinfer.cpp:841:gst_nvinfer_start:<primary_gie> error: Failed to create NvDsInferContext instance
0:00:04.672394625 8204 0x8ac3a90 WARN nvinfer gstnvinfer.cpp:841:gst_nvinfer_start:<primary_gie> error: Config file path: /opt/nvidia/deepstream/deepstream-6.0/samples/configs/deepstream-app/config_infer_primary.txt, NvDsInfer Error: NVDSINFER_CONFIG_FAILED
** ERROR: <main:707>: Failed to set pipeline to PAUSED
Quitting
ERROR from primary_gie: Failed to create NvDsInferContext instance
Debug info: /dvs/git/dirty/git-master_linux/deepstream/sdk/src/gst-plugins/gst-nvinfer/gstnvinfer.cpp(841): gst_nvinfer_start (): /GstPipeline:pipeline/GstBin:primary_gie_bin/GstNvInfer:primary_gie:
Config file path: /opt/nvidia/deepstream/deepstream-6.0/samples/configs/deepstream-app/config_infer_primary.txt, NvDsInfer Error: NVDSINFER_CONFIG_FAILED
App run failed
I suppose that my issue is in this:
ERROR: [TRT]: 1: [executionResources.cpp::setTacticSources::156] Error Code 1: Cudnn (Could not initialize cudnn, please check cudnn installation.)
Here are some details about the system:
nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2021 NVIDIA Corporation
Built on Sun_Feb_28_22:34:44_PST_2021
Cuda compilation tools, release 10.2, V10.2.300
Build cuda_10.2_r440.TC440_70.29663091_0
uname -a
Linux ubuntu 4.9.299-tegra #1 SMP PREEMPT Tue Nov 22 09:24:39 PST 2022 aarch64 aarch64 aarch64 GNU/Linux
cat /etc/nv_tegra_release
# R32 (release), REVISION: 7.4, GCID: 33514132, BOARD: t210ref, EABI: aarch64, DATE: Fri Jun 9 04:25:08 UTC 2023
./deviceQuery
/usr/local/cuda/samples/1_Utilities/deviceQuery/./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "NVIDIA Tegra X1"
CUDA Driver Version / Runtime Version 10.2 / 10.2
CUDA Capability Major/Minor version number: 5.3
Total amount of global memory: 3964 MBytes (4156514304 bytes)
( 1) Multiprocessors, (128) CUDA Cores/MP: 128 CUDA Cores
GPU Max Clock rate: 922 MHz (0.92 GHz)
Memory Clock rate: 13 Mhz
Memory Bus Width: 64-bit
L2 Cache Size: 262144 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: Yes
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device supports Compute Preemption: No
Supports Cooperative Kernel Launch: No
Supports MultiDevice Co-op Kernel Launch: No
Device PCI Domain ID / Bus ID / location ID: 0 / 0 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.2, CUDA Runtime Version = 10.2, NumDevs = 1
Result = PASS
Thanks