Jetson Orin Nano upgraded Super mode

After Jetson Orin Nano upgraded Super mode,CUDA12.6+Pytorch2.6.0+cu126

系统信息:
Python版本: 3.9.21 (main, Dec 11 2024, 16:27:47)
[GCC 11.2.0]

NumPy版本: 1.26.4

NVIDIA驱动信息:
Thu Feb 13 09:29:06 2025
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 540.4.0                Driver Version: 540.4.0      CUDA Version: 12.6     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  Orin (nvgpu)                  N/A  | N/A              N/A |                  N/A |
| N/A   N/A  N/A               N/A /  N/A | Not Supported        |     N/A          N/A |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+

+---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
|  No running processes found                                                           |
+---------------------------------------------------------------------------------------+


CUDA版本信息:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Tue_Oct_29_23:53:06_PDT_2024
Cuda compilation tools, release 12.6, V12.6.85
Build cuda_12.6.r12.6/compiler.35059454_0

检测到CUDA版本: 12.6

CUDNN信息:
在 /usr/local/cuda/lib64 中找到CUDNN库:
-rw-r--r-- 1 root root 137008  2月 12 17:24 /usr/local/cuda/lib64/libcudnn.so
-rw-r--r-- 1 root root 137008  2月 12 17:24 /usr/local/cuda/lib64/libcudnn.so.9
-rw-r--r-- 1 root root 137008  2月 12 17:24 /usr/local/cuda/lib64/libcudnn.so.9.5.1

在 /usr/local/cuda/targets/aarch64-linux/lib 中找到CUDNN库:
-rw-r--r-- 1 root root 137008  2月 12 17:24 /usr/local/cuda/targets/aarch64-linux/lib/libcudnn.so
-rw-r--r-- 1 root root 137008  2月 12 17:24 /usr/local/cuda/targets/aarch64-linux/lib/libcudnn.so.9
-rw-r--r-- 1 root root 137008  2月 12 17:24 /usr/local/cuda/targets/aarch64-linux/lib/libcudnn.so.9.5.1


系统架构:
aarch64


库路径信息:
LD_LIBRARY_PATH: /usr/local/cuda-12.6/lib64:/usr/local/cuda-12.6/lib64:

Python包信息:
torch                    2.6.0+cu126
torchaudio               2.6.0
torchvision              0.21.0

检查PyTorch安装...

PyTorch版本: 2.6.0+cu126

CUDA是否可用: True
CUDA版本: 12.6
cuDNN版本: 90501
GPU设备: Orin

GPU内存信息:
总显存: 3.52 GB
当前占用: 0.00 GB
当前缓存: 0.00 GB

CUDA测试成功!

When training the Yolo v5 7.0 model, the following error occurred

Traceback (most recent call last):
  File "/home/user/Desktop/yolov5-7.0/train.py", line 635, in <module>
    main(opt)
  File "/home/user/Desktop/yolov5-7.0/train.py", line 529, in main
    train(opt.hyp, opt, device, callbacks)
  File "/home/user/Desktop/yolov5-7.0/train.py", line 126, in train
    model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
  File "/usr/local/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1343, in to
    return self._apply(convert)
  File "/home/user/Desktop/yolov5-7.0/models/yolo.py", line 155, in _apply
    self = super()._apply(fn)
  File "/usr/local/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py", line 903, in _apply
    module._apply(fn)
  File "/usr/local/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py", line 903, in _apply
    module._apply(fn)
  File "/usr/local/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py", line 903, in _apply
    module._apply(fn)
  File "/usr/local/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py", line 930, in _apply
    param_applied = fn(param)
  File "/usr/local/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1329, in convert
    return t.to(
RuntimeError: CUDA error: no kernel image is available for execution on the device
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

Hi,

The default Python of JetPack 6.2 is 3.10.
Is your model can work with Python 3.10 or it depends on the 3.9?

Thanks.

1 Like

On my x64 Windows11, both 3.9 and 3.10 can normally call CUDA for yolov5 7.0 model training. But not on the jetson orin nano. jetpack is version 6.2

python3.10 is now used

There is no update from you for a period, assuming this is not an issue anymore.
Hence, we are closing this topic. If need further support, please open a new one.
Thanks

Hi,

Do you meet error when switching to python 3.10?

Thanks.