To run with multigpu, please change --gpus based on the number of available GPUs in your machine.
2022-12-12 11:31:43,662 [INFO] root: Registry: [‘nvcr.io’]
2022-12-12 11:31:43,716 [INFO] tlt.components.instance_handler.local_instance: Running command in container: nvcr.io/nvidia/tao/tao-toolkit-tf:v3.22.05-tf1.15.5-py3
2022-12-12 11:31:43,806 [WARNING] tlt.components.docker_handler.docker_handler:
Docker will run the commands as root. If you would like to retain your
local host permissions, please add the “user”:“UID:GID” in the
DockerOptions portion of the “/home/alexknish/.tao_mounts.json” file. You can obtain your
users UID and GID by using the “id -u” and “id -g” commands on the
terminal.
Using TensorFlow backend.
Using TensorFlow backend.
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
/usr/local/lib/python3.6/dist-packages/requests/init.py:91: RequestsDependencyWarning: urllib3 (1.26.5) or chardet (3.0.4) doesn’t match a supported version!
RequestsDependencyWarning)
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v4/scripts/train.py:42: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v4/scripts/train.py:42: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v4/scripts/train.py:45: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v4/scripts/train.py:45: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:153: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.
WARNING: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:153: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.
INFO: Log file already exists at /workspace/tao-experiments/yolo_v4_tiny/experiment_dir_unpruned/status.json
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v3/data_loader/generate_shape_tensors.py:8: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v3/data_loader/generate_shape_tensors.py:8: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead.
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v3/data_loader/generate_shape_tensors.py:8: The name tf.AUTO_REUSE is deprecated. Please use tf.compat.v1.AUTO_REUSE instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v3/data_loader/generate_shape_tensors.py:8: The name tf.AUTO_REUSE is deprecated. Please use tf.compat.v1.AUTO_REUSE instead.
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v3/data_loader/generate_shape_tensors.py:9: The name tf.get_variable is deprecated. Please use tf.compat.v1.get_variable instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v3/data_loader/generate_shape_tensors.py:9: The name tf.get_variable is deprecated. Please use tf.compat.v1.get_variable instead.
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v3/data_loader/generate_shape_tensors.py:55: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v3/data_loader/generate_shape_tensors.py:55: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.
WARNING: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.
WARNING: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.
WARNING: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.
WARNING:tensorflow:From /opt/nvidia/third_party/keras/tensorflow_backend.py:183: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead.
WARNING: From /opt/nvidia/third_party/keras/tensorflow_backend.py:183: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:2018: The name tf.image.resize_nearest_neighbor is deprecated. Please use tf.compat.v1.image.resize_nearest_neighbor instead.
WARNING: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:2018: The name tf.image.resize_nearest_neighbor is deprecated. Please use tf.compat.v1.image.resize_nearest_neighbor instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.
WARNING: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
WARNING: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.
WARNING: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.
WARNING: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.
INFO: Serial augmentation enabled = False
INFO: Pseudo sharding enabled = False
INFO: Max Image Dimensions (all sources): (0, 0)
INFO: number of cpus: 16, io threads: 32, compute threads: 16, buffered batches: -1
INFO: total dataset size 1174, number of sources: 1, batch size per gpu: 20, steps: 59
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/autograph/converters/directives.py:119: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
WARNING: From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/autograph/converters/directives.py:119: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
WARNING:tensorflow:Entity <bound method YOLOv3TFRecordsParser.call of <iva.yolo_v3.data_loader.yolo_v3_data_loader.YOLOv3TFRecordsParser object at 0x7f05f40844a8>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, export AUTOGRAPH_VERBOSITY=10
) and attach the full output. Cause: Unable to locate the source code of <bound method YOLOv3TFRecordsParser.call of <iva.yolo_v3.data_loader.yolo_v3_data_loader.YOLOv3TFRecordsParser object at 0x7f05f40844a8>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
WARNING: Entity <bound method YOLOv3TFRecordsParser.call of <iva.yolo_v3.data_loader.yolo_v3_data_loader.YOLOv3TFRecordsParser object at 0x7f05f40844a8>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, export AUTOGRAPH_VERBOSITY=10
) and attach the full output. Cause: Unable to locate the source code of <bound method YOLOv3TFRecordsParser.call of <iva.yolo_v3.data_loader.yolo_v3_data_loader.YOLOv3TFRecordsParser object at 0x7f05f40844a8>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
INFO: Bounding box coordinates were detected in the input specification! Bboxes will be automatically converted to polygon coordinates.
INFO: shuffle: True - shard 0 of 1
INFO: sampling 1 datasets with weights:
INFO: source: 0 weight: 1.000000
WARNING:tensorflow:Entity <bound method Processor.call of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f05bc231f98>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, export AUTOGRAPH_VERBOSITY=10
) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.call of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f05bc231f98>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
WARNING: Entity <bound method Processor.call of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f05bc231f98>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, export AUTOGRAPH_VERBOSITY=10
) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.call of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f05bc231f98>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
/opt/nvidia/third_party/keras/tensorflow_backend.py:356: UserWarning: Seed 42 from outer graph might be getting used by function Dataset_map__map_func_set_random_wrapper, if the random op has not been provided any seed. Explicitly set the seed in the function if this is not the intended behavior.
self, _map_func_set_random_wrapper, num_parallel_calls=num_parallel_calls
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/data/ops/dataset_ops.py:302: UserWarning: tf.data static optimizations are not compatible with tf.Variable. The following optimizations will be disabled: map_and_batch_fusion, noop_elimination, shuffle_and_repeat_fusion. To enable optimizations, use resource variables instead by calling tf.enable_resource_variables()
at the start of the program.
", ".join(static_optimizations))
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v4/dataio/tf_data_pipe.py:131: The name tf.image.resize_images is deprecated. Please use tf.image.resize instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v4/dataio/tf_data_pipe.py:131: The name tf.image.resize_images is deprecated. Please use tf.image.resize instead.
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/common/visualizer/tensorboard_visualizer.py:79: The name tf.summary.image is deprecated. Please use tf.compat.v1.summary.image instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/common/visualizer/tensorboard_visualizer.py:79: The name tf.summary.image is deprecated. Please use tf.compat.v1.summary.image instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.
WARNING: From /usr/local/lib/python3.6/dist-packages/keras/optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/common/losses/base_loss.py:40: The name tf.log is deprecated. Please use tf.math.log instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/common/losses/base_loss.py:40: The name tf.log is deprecated. Please use tf.math.log instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:986: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead.
WARNING: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:986: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead.
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/common/visualizer/tensorboard_visualizer.py:85: The name tf.summary.histogram is deprecated. Please use tf.compat.v1.summary.histogram instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/common/visualizer/tensorboard_visualizer.py:85: The name tf.summary.histogram is deprecated. Please use tf.compat.v1.summary.histogram instead.
INFO: Serial augmentation enabled = False
INFO: Pseudo sharding enabled = False
INFO: Max Image Dimensions (all sources): (0, 0)
INFO: number of cpus: 16, io threads: 32, compute threads: 16, buffered batches: -1
INFO: total dataset size 470, number of sources: 1, batch size per gpu: 8, steps: 59
WARNING:tensorflow:Entity <bound method YOLOv3TFRecordsParser.call of <iva.yolo_v3.data_loader.yolo_v3_data_loader.YOLOv3TFRecordsParser object at 0x7f0475a9a7b8>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, export AUTOGRAPH_VERBOSITY=10
) and attach the full output. Cause: Unable to locate the source code of <bound method YOLOv3TFRecordsParser.call of <iva.yolo_v3.data_loader.yolo_v3_data_loader.YOLOv3TFRecordsParser object at 0x7f0475a9a7b8>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
WARNING: Entity <bound method YOLOv3TFRecordsParser.call of <iva.yolo_v3.data_loader.yolo_v3_data_loader.YOLOv3TFRecordsParser object at 0x7f0475a9a7b8>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, export AUTOGRAPH_VERBOSITY=10
) and attach the full output. Cause: Unable to locate the source code of <bound method YOLOv3TFRecordsParser.call of <iva.yolo_v3.data_loader.yolo_v3_data_loader.YOLOv3TFRecordsParser object at 0x7f0475a9a7b8>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
INFO: Bounding box coordinates were detected in the input specification! Bboxes will be automatically converted to polygon coordinates.
INFO: shuffle: False - shard 0 of 1
INFO: sampling 1 datasets with weights:
INFO: source: 0 weight: 1.000000
WARNING:tensorflow:Entity <bound method Processor.call of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f0475938dd8>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, export AUTOGRAPH_VERBOSITY=10
) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.call of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f0475938dd8>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
WARNING: Entity <bound method Processor.call of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f0475938dd8>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, export AUTOGRAPH_VERBOSITY=10
) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.call of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f0475938dd8>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/common/utils.py:1123: The name tf.summary.FileWriter is deprecated. Please use tf.compat.v1.summary.FileWriter instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/common/utils.py:1123: The name tf.summary.FileWriter is deprecated. Please use tf.compat.v1.summary.FileWriter instead.
INFO: Log file already exists at /workspace/tao-experiments/yolo_v4_tiny/experiment_dir_unpruned/status.json
Layer (type) Output Shape Param # Connected to
Input (InputLayer) (8, 3, None, None) 0
Input_qdq (QDQ) (8, 3, None, None) 1 Input[0][0]
conv_0 (QuantizedConv2D) (8, 32, None, None) 864 Input_qdq[0][0]
conv_0_bn (BatchNormalization) (8, 32, None, None) 128 conv_0[0][0]
conv_0_mish (ReLU) (8, 32, None, None) 0 conv_0_bn[0][0]
conv_0_mish_qdq (QDQ) (8, 32, None, None) 1 conv_0_mish[0][0]
conv_1 (QuantizedConv2D) (8, 64, None, None) 18432 conv_0_mish_qdq[0][0]
conv_1_bn (BatchNormalization) (8, 64, None, None) 256 conv_1[0][0]
conv_1_mish (ReLU) (8, 64, None, None) 0 conv_1_bn[0][0]
conv_1_mish_qdq (QDQ) (8, 64, None, None) 1 conv_1_mish[0][0]
conv_2_conv_0 (QuantizedConv2D) (8, 64, None, None) 36864 conv_1_mish_qdq[0][0]
conv_2_conv_0_bn (BatchNormaliz (8, 64, None, None) 256 conv_2_conv_0[0][0]
conv_2_conv_0_mish (ReLU) (8, 64, None, None) 0 conv_2_conv_0_bn[0][0]
conv_2_conv_0_mish_qdq (QDQ) (8, 64, None, None) 1 conv_2_conv_0_mish[0][0]
conv_2_split_0 (Split) (8, 32, None, None) 0 conv_2_conv_0_mish_qdq[0][0]
conv_2_split_0_qdq (QDQ) (8, 32, None, None) 1 conv_2_split_0[0][0]
conv_2_conv_1 (QuantizedConv2D) (8, 32, None, None) 9216 conv_2_split_0_qdq[0][0]
conv_2_conv_1_bn (BatchNormaliz (8, 32, None, None) 128 conv_2_conv_1[0][0]
conv_2_conv_1_mish (ReLU) (8, 32, None, None) 0 conv_2_conv_1_bn[0][0]
conv_2_conv_1_mish_qdq (QDQ) (8, 32, None, None) 1 conv_2_conv_1_mish[0][0]
conv_2_conv_2 (QuantizedConv2D) (8, 32, None, None) 9216 conv_2_conv_1_mish_qdq[0][0]
conv_2_conv_2_bn (BatchNormaliz (8, 32, None, None) 128 conv_2_conv_2[0][0]
conv_2_conv_2_mish (ReLU) (8, 32, None, None) 0 conv_2_conv_2_bn[0][0]
conv_2_conv_2_mish_qdq (QDQ) (8, 32, None, None) 1 conv_2_conv_2_mish[0][0]
conv_2_concat_0 (Concatenate) (8, 64, None, None) 0 conv_2_conv_2_mish_qdq[0][0]
conv_2_conv_1_mish_qdq[0][0]
conv_2_concat_0_qdq (QDQ) (8, 64, None, None) 1 conv_2_concat_0[0][0]
conv_2_conv_3 (QuantizedConv2D) (8, 64, None, None) 4096 conv_2_concat_0_qdq[0][0]
conv_2_conv_3_bn (BatchNormaliz (8, 64, None, None) 256 conv_2_conv_3[0][0]
conv_2_conv_3_mish (ReLU) (8, 64, None, None) 0 conv_2_conv_3_bn[0][0]
conv_2_conv_3_mish_qdq (QDQ) (8, 64, None, None) 1 conv_2_conv_3_mish[0][0]
conv_2_concat_1 (Concatenate) (8, 128, None, None) 0 conv_2_conv_0_mish_qdq[0][0]
conv_2_conv_3_mish_qdq[0][0]
conv_2_concat_1_qdq (QDQ) (8, 128, None, None) 1 conv_2_concat_1[0][0]
conv_2_pool_0 (MaxPooling2D) (8, 128, None, None) 0 conv_2_concat_1_qdq[0][0]
conv_2_pool_0_qdq (QDQ) (8, 128, None, None) 1 conv_2_pool_0[0][0]
conv_3_conv_0 (QuantizedConv2D) (8, 128, None, None) 147456 conv_2_pool_0_qdq[0][0]
conv_3_conv_0_bn (BatchNormaliz (8, 128, None, None) 512 conv_3_conv_0[0][0]
conv_3_conv_0_mish (ReLU) (8, 128, None, None) 0 conv_3_conv_0_bn[0][0]
conv_3_conv_0_mish_qdq (QDQ) (8, 128, None, None) 1 conv_3_conv_0_mish[0][0]
conv_3_split_0 (Split) (8, 64, None, None) 0 conv_3_conv_0_mish_qdq[0][0]
conv_3_split_0_qdq (QDQ) (8, 64, None, None) 1 conv_3_split_0[0][0]
conv_3_conv_1 (QuantizedConv2D) (8, 64, None, None) 36864 conv_3_split_0_qdq[0][0]
conv_3_conv_1_bn (BatchNormaliz (8, 64, None, None) 256 conv_3_conv_1[0][0]
conv_3_conv_1_mish (ReLU) (8, 64, None, None) 0 conv_3_conv_1_bn[0][0]
conv_3_conv_1_mish_qdq (QDQ) (8, 64, None, None) 1 conv_3_conv_1_mish[0][0]
conv_3_conv_2 (QuantizedConv2D) (8, 64, None, None) 36864 conv_3_conv_1_mish_qdq[0][0]
conv_3_conv_2_bn (BatchNormaliz (8, 64, None, None) 256 conv_3_conv_2[0][0]
conv_3_conv_2_mish (ReLU) (8, 64, None, None) 0 conv_3_conv_2_bn[0][0]
conv_3_conv_2_mish_qdq (QDQ) (8, 64, None, None) 1 conv_3_conv_2_mish[0][0]
conv_3_concat_0 (Concatenate) (8, 128, None, None) 0 conv_3_conv_2_mish_qdq[0][0]
conv_3_conv_1_mish_qdq[0][0]
conv_3_concat_0_qdq (QDQ) (8, 128, None, None) 1 conv_3_concat_0[0][0]
conv_3_conv_3 (QuantizedConv2D) (8, 128, None, None) 16384 conv_3_concat_0_qdq[0][0]
conv_3_conv_3_bn (BatchNormaliz (8, 128, None, None) 512 conv_3_conv_3[0][0]
conv_3_conv_3_mish (ReLU) (8, 128, None, None) 0 conv_3_conv_3_bn[0][0]
conv_3_conv_3_mish_qdq (QDQ) (8, 128, None, None) 1 conv_3_conv_3_mish[0][0]
conv_3_concat_1 (Concatenate) (8, 256, None, None) 0 conv_3_conv_0_mish_qdq[0][0]
conv_3_conv_3_mish_qdq[0][0]
conv_3_concat_1_qdq (QDQ) (8, 256, None, None) 1 conv_3_concat_1[0][0]
conv_3_pool_0 (MaxPooling2D) (8, 256, None, None) 0 conv_3_concat_1_qdq[0][0]
conv_3_pool_0_qdq (QDQ) (8, 256, None, None) 1 conv_3_pool_0[0][0]
conv_4_conv_0 (QuantizedConv2D) (8, 256, None, None) 589824 conv_3_pool_0_qdq[0][0]
conv_4_conv_0_bn (BatchNormaliz (8, 256, None, None) 1024 conv_4_conv_0[0][0]
conv_4_conv_0_mish (ReLU) (8, 256, None, None) 0 conv_4_conv_0_bn[0][0]
conv_4_conv_0_mish_qdq (QDQ) (8, 256, None, None) 1 conv_4_conv_0_mish[0][0]
conv_4_split_0 (Split) (8, 128, None, None) 0 conv_4_conv_0_mish_qdq[0][0]
conv_4_split_0_qdq (QDQ) (8, 128, None, None) 1 conv_4_split_0[0][0]
conv_4_conv_1 (QuantizedConv2D) (8, 128, None, None) 147456 conv_4_split_0_qdq[0][0]
conv_4_conv_1_bn (BatchNormaliz (8, 128, None, None) 512 conv_4_conv_1[0][0]
conv_4_conv_1_mish (ReLU) (8, 128, None, None) 0 conv_4_conv_1_bn[0][0]
conv_4_conv_1_mish_qdq (QDQ) (8, 128, None, None) 1 conv_4_conv_1_mish[0][0]
conv_4_conv_2 (QuantizedConv2D) (8, 128, None, None) 147456 conv_4_conv_1_mish_qdq[0][0]
conv_4_conv_2_bn (BatchNormaliz (8, 128, None, None) 512 conv_4_conv_2[0][0]
conv_4_conv_2_mish (ReLU) (8, 128, None, None) 0 conv_4_conv_2_bn[0][0]
conv_4_conv_2_mish_qdq (QDQ) (8, 128, None, None) 1 conv_4_conv_2_mish[0][0]
conv_4_concat_0 (Concatenate) (8, 256, None, None) 0 conv_4_conv_2_mish_qdq[0][0]
conv_4_conv_1_mish_qdq[0][0]
conv_4_concat_0_qdq (QDQ) (8, 256, None, None) 1 conv_4_concat_0[0][0]
conv_4_conv_3 (QuantizedConv2D) (8, 256, None, None) 65536 conv_4_concat_0_qdq[0][0]
conv_4_conv_3_bn (BatchNormaliz (8, 256, None, None) 1024 conv_4_conv_3[0][0]
conv_4_conv_3_mish (ReLU) (8, 256, None, None) 0 conv_4_conv_3_bn[0][0]
conv_4_conv_3_mish_qdq (QDQ) (8, 256, None, None) 1 conv_4_conv_3_mish[0][0]
conv_4_concat_1 (Concatenate) (8, 512, None, None) 0 conv_4_conv_0_mish_qdq[0][0]
conv_4_conv_3_mish_qdq[0][0]
conv_4_concat_1_qdq (QDQ) (8, 512, None, None) 1 conv_4_concat_1[0][0]
conv_4_pool_0 (MaxPooling2D) (8, 512, None, None) 0 conv_4_concat_1_qdq[0][0]
conv_4_pool_0_qdq (QDQ) (8, 512, None, None) 1 conv_4_pool_0[0][0]
conv_5 (QuantizedConv2D) (8, 512, None, None) 2359296 conv_4_pool_0_qdq[0][0]
conv_5_bn (BatchNormalization) (8, 512, None, None) 2048 conv_5[0][0]
conv_5_mish (ReLU) (8, 512, None, None) 0 conv_5_bn[0][0]
conv_5_mish_qdq (QDQ) (8, 512, None, None) 1 conv_5_mish[0][0]
yolo_conv1_1 (QuantizedConv2D) (8, 256, None, None) 131072 conv_5_mish_qdq[0][0]
yolo_conv1_1_bn (BatchNormaliza (8, 256, None, None) 1024 yolo_conv1_1[0][0]
yolo_conv1_1_lrelu (ReLU) (8, 256, None, None) 0 yolo_conv1_1_bn[0][0]
yolo_conv1_1_lrelu_qdq (QDQ) (8, 256, None, None) 1 yolo_conv1_1_lrelu[0][0]
yolo_conv2 (QuantizedConv2D) (8, 128, None, None) 32768 yolo_conv1_1_lrelu_qdq[0][0]
yolo_conv2_bn (BatchNormalizati (8, 128, None, None) 512 yolo_conv2[0][0]
yolo_conv2_lrelu (ReLU) (8, 128, None, None) 0 yolo_conv2_bn[0][0]
yolo_conv2_lrelu_qdq (QDQ) (8, 128, None, None) 1 yolo_conv2_lrelu[0][0]
upsample0 (UpSampling2D) (8, 128, None, None) 0 yolo_conv2_lrelu_qdq[0][0]
upsample0_qdq (QDQ) (8, 128, None, None) 1 upsample0[0][0]
concatenate_2 (Concatenate) (8, 384, None, None) 0 upsample0_qdq[0][0]
conv_4_conv_3_mish_qdq[0][0]
concatenate_2_qdq (QDQ) (8, 384, None, None) 1 concatenate_2[0][0]
yolo_conv1_6 (QuantizedConv2D) (8, 512, None, None) 1179648 yolo_conv1_1_lrelu_qdq[0][0]
yolo_conv3_6 (QuantizedConv2D) (8, 256, None, None) 884736 concatenate_2_qdq[0][0]
yolo_conv1_6_bn (BatchNormaliza (8, 512, None, None) 2048 yolo_conv1_6[0][0]
yolo_conv3_6_bn (BatchNormaliza (8, 256, None, None) 1024 yolo_conv3_6[0][0]
yolo_conv1_6_lrelu (ReLU) (8, 512, None, None) 0 yolo_conv1_6_bn[0][0]
yolo_conv3_6_lrelu (ReLU) (8, 256, None, None) 0 yolo_conv3_6_bn[0][0]
yolo_conv1_6_lrelu_qdq (QDQ) (8, 512, None, None) 1 yolo_conv1_6_lrelu[0][0]
yolo_conv3_6_lrelu_qdq (QDQ) (8, 256, None, None) 1 yolo_conv3_6_lrelu[0][0]
conv_big_object (Conv2D) (8, 33, None, None) 16929 yolo_conv1_6_lrelu_qdq[0][0]
conv_mid_object (Conv2D) (8, 33, None, None) 8481 yolo_conv3_6_lrelu_qdq[0][0]
bg_permute (Permute) (8, None, None, 33) 0 conv_big_object[0][0]
md_permute (Permute) (8, None, None, 33) 0 conv_mid_object[0][0]
bg_reshape (Reshape) (8, None, 11) 0 bg_permute[0][0]
md_reshape (Reshape) (8, None, 11) 0 md_permute[0][0]
bg_anchor (YOLOAnchorBox) (8, None, 6) 0 conv_big_object[0][0]
bg_bbox_processor (BBoxPostProc (8, None, 11) 0 bg_reshape[0][0]
md_anchor (YOLOAnchorBox) (8, None, 6) 0 conv_mid_object[0][0]
md_bbox_processor (BBoxPostProc (8, None, 11) 0 md_reshape[0][0]
encoded_bg (Concatenate) (8, None, 17) 0 bg_anchor[0][0]
bg_bbox_processor[0][0]
encoded_md (Concatenate) (8, None, 17) 0 md_anchor[0][0]
md_bbox_processor[0][0]
encoded_detections (Concatenate (8, None, 17) 0 encoded_bg[0][0]
encoded_md[0][0]
Total params: 5,891,908
Trainable params: 5,885,666
Non-trainable params: 6,242
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v3/utils/tensor_utils.py:7: The name tf.local_variables_initializer is deprecated. Please use tf.compat.v1.local_variables_initializer instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v3/utils/tensor_utils.py:7: The name tf.local_variables_initializer is deprecated. Please use tf.compat.v1.local_variables_initializer instead.
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v3/utils/tensor_utils.py:8: The name tf.tables_initializer is deprecated. Please use tf.compat.v1.tables_initializer instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v3/utils/tensor_utils.py:8: The name tf.tables_initializer is deprecated. Please use tf.compat.v1.tables_initializer instead.
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v3/utils/tensor_utils.py:9: The name tf.get_collection is deprecated. Please use tf.compat.v1.get_collection instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/yolo_v3/utils/tensor_utils.py:9: The name tf.get_collection is deprecated. Please use tf.compat.v1.get_collection instead.
WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/common/utils.py:1171: The name tf.summary.merge_all is deprecated. Please use tf.compat.v1.summary.merge_all instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/common/utils.py:1171: The name tf.summary.merge_all is deprecated. Please use tf.compat.v1.summary.merge_all instead.
INFO: Starting Training Loop.
Epoch 251/500
1/147 […] - ETA: 1:02:26 - loss: 64.7614WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/common/utils.py:186: The name tf.Summary is deprecated. Please use tf.compat.v1.Summary instead.
WARNING: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/common/utils.py:186: The name tf.Summary is deprecated. Please use tf.compat.v1.Summary instead.
2/147 […] - ETA: 41:29 - loss: 67.3439 /usr/local/lib/python3.6/dist-packages/keras/callbacks.py:122: UserWarning: Method on_batch_end() is slow compared to the batch update (3.784871). Check your callbacks.
% delta_t_median)
147/147 [==============================] - 232s 2s/step - loss: 70.2053
897376ad6fe1:78:133 [0] NCCL INFO Bootstrap : Using eth0:172.17.0.3<0>
897376ad6fe1:78:133 [0] NCCL INFO Plugin Path : /opt/hpcx/nccl_rdma_sharp_plugin/lib/libnccl-net.so
897376ad6fe1:78:133 [0] NCCL INFO P2P plugin IBext
897376ad6fe1:78:133 [0] NCCL INFO NET/IB : No device found.
897376ad6fe1:78:133 [0] NCCL INFO NET/IB : No device found.
897376ad6fe1:78:133 [0] NCCL INFO NET/Socket : Using [0]eth0:172.17.0.3<0>
897376ad6fe1:78:133 [0] NCCL INFO Using network Socket
NCCL version 2.11.4+cuda11.6
897376ad6fe1:78:133 [0] NCCL INFO Channel 00/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 01/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 02/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 03/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 04/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 05/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 06/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 07/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 08/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 09/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 10/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 11/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 12/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 13/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 14/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 15/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 16/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 17/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 18/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 19/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 20/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 21/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 22/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 23/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 24/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 25/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 26/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 27/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 28/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 29/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 30/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Channel 31/32 : 0
897376ad6fe1:78:133 [0] NCCL INFO Trees [0] -1/-1/-1->0->-1 [1] -1/-1/-1->0->-1 [2] -1/-1/-1->0->-1 [3] -1/-1/-1->0->-1 [4] -1/-1/-1->0->-1 [5] -1/-1/-1->0->-1 [6] -1/-1/-1->0->-1 [7] -1/-1/-1->0->-1 [8] -1/-1/-1->0->-1 [9] -1/-1/-1->0->-1 [10] -1/-1/-1->0->-1 [11] -1/-1/-1->0->-1 [12] -1/-1/-1->0->-1 [13] -1/-1/-1->0->-1 [14] -1/-1/-1->0->-1 [15] -1/-1/-1->0->-1 [16] -1/-1/-1->0->-1 [17] -1/-1/-1->0->-1 [18] -1/-1/-1->0->-1 [19] -1/-1/-1->0->-1 [20] -1/-1/-1->0->-1 [21] -1/-1/-1->0->-1 [22] -1/-1/-1->0->-1 [23] -1/-1/-1->0->-1 [24] -1/-1/-1->0->-1 [25] -1/-1/-1->0->-1 [26] -1/-1/-1->0->-1 [27] -1/-1/-1->0->-1 [28] -1/-1/-1->0->-1 [29] -1/-1/-1->0->-1 [30] -1/-1/-1->0->-1 [31] -1/-1/-1->0->-1
897376ad6fe1:78:133 [0] NCCL INFO Connected all rings
897376ad6fe1:78:133 [0] NCCL INFO Connected all trees
897376ad6fe1:78:133 [0] NCCL INFO 32 coll channels, 32 p2p channels, 32 p2p channels per peer
897376ad6fe1:78:133 [0] NCCL INFO comm 0x7f06187cefa0 rank 0 nranks 1 cudaDev 0 busId 1000 - Init COMPLETE
INFO: Training loop in progress
Epoch 252/500
147/147 [==============================] - 204s 1s/step - loss: 61.2787
INFO: Training loop in progress
Epoch 253/500
147/147 [==============================] - 205s 1s/step - loss: 64.2056
INFO: Training loop in progress
Epoch 254/500
147/147 [==============================] - 205s 1s/step - loss: 67.1287
INFO: Training loop in progress
Epoch 255/500
147/147 [==============================] - 198s 1s/step - loss: 67.6356
INFO: Training loop in progress
Epoch 256/500
147/147 [==============================] - 189s 1s/step - loss: 65.1828
INFO: Training loop in progress
Epoch 257/500
147/147 [==============================] - 198s 1s/step - loss: 66.8854
INFO: Training loop in progress
Epoch 258/500
147/147 [==============================] - 188s 1s/step - loss: 66.0739
INFO: Training loop in progress
Epoch 259/500
147/147 [==============================] - 207s 1s/step - loss: 70.7531
INFO: Training loop in progress
Epoch 260/500
147/147 [==============================] - 197s 1s/step - loss: 67.0885
INFO: Training loop in progress
Epoch 261/500
147/147 [==============================] - 178s 1s/step - loss: 67.2656
INFO: Training loop in progress
Epoch 262/500
147/147 [==============================] - 197s 1s/step - loss: 66.9330
INFO: Training loop in progress
Epoch 263/500
147/147 [==============================] - 173s 1s/step - loss: 65.8832
INFO: Training loop in progress
Epoch 264/500
147/147 [==============================] - 187s 1s/step - loss: 62.9290
INFO: Training loop in progress
Epoch 265/500
147/147 [==============================] - 191s 1s/step - loss: 62.0031
INFO: Training loop in progress
Epoch 266/500
147/147 [==============================] - 178s 1s/step - loss: 64.7157
INFO: Training loop in progress
Epoch 267/500
147/147 [==============================] - 197s 1s/step - loss: 67.0461
INFO: Training loop in progress
Epoch 268/500
147/147 [==============================] - 202s 1s/step - loss: 60.5556
INFO: Training loop in progress
Epoch 269/500
147/147 [==============================] - 184s 1s/step - loss: 66.5040
INFO: Training loop in progress
Epoch 270/500
147/147 [==============================] - 169s 1s/step - loss: 61.5989
INFO: Training loop in progress
Epoch 271/500
1/147 […] - ETA: 3:49 - loss: 64.7281/usr/local/lib/python3.6/dist-packages/keras/callbacks.py:122: UserWarning: Method on_batch_end() is slow compared to the batch update (0.437024). Check your callbacks.
% delta_t_median)
147/147 [==============================] - 170s 1s/step - loss: 60.4126
INFO: Training loop in progress
Epoch 272/500
147/147 [==============================] - 176s 1s/step - loss: 58.0459
INFO: Training loop in progress
Epoch 273/500
147/147 [==============================] - 168s 1s/step - loss: 66.4481
INFO: Training loop in progress
Epoch 274/500
147/147 [==============================] - 170s 1s/step - loss: 62.8000
INFO: Training loop in progress
Epoch 275/500
147/147 [==============================] - 184s 1s/step - loss: 60.6755
Producing predictions: 100%|████████████████████| 59/59 [00:27<00:00, 2.12it/s]
Start to calculate AP for each class
bus AP 0.66084
car AP 0.38857
motorcycle AP 0.15224
person AP 0.4014
truck AP 0.42886
van AP 0.73351
mAP 0.4609
Validation loss: 37.082874540555274
Epoch 00275: saving model to /workspace/tao-experiments/yolo_v4_tiny/experiment_dir_unpruned/weights/yolov4_cspdarknet_tiny_epoch_275.tlt
INFO: Training loop in progress
Epoch 276/500
147/147 [==============================] - 168s 1s/step - loss: 60.5292
INFO: Training loop in progress
Epoch 277/500
147/147 [==============================] - 178s 1s/step - loss: 58.5089
INFO: Training loop in progress
Epoch 278/500
147/147 [==============================] - 159s 1s/step - loss: 60.8334
INFO: Training loop in progress
Epoch 279/500
147/147 [==============================] - 178s 1s/step - loss: 61.1158
INFO: Training loop in progress
Epoch 280/500
147/147 [==============================] - 164s 1s/step - loss: 64.5135
INFO: Training loop in progress
Epoch 281/500
147/147 [==============================] - 169s 1s/step - loss: 62.3210
INFO: Training loop in progress
Epoch 282/500
2/147 […] - ETA: 3:10 - loss: 70.7986/usr/local/lib/python3.6/dist-packages/keras/callbacks.py:122: UserWarning: Method on_batch_end() is slow compared to the batch update (0.613669). Check your callbacks.
% delta_t_median)
3/147 […] - ETA: 3:04 - loss: 67.1386/usr/local/lib/python3.6/dist-packages/keras/callbacks.py:122: UserWarning: Method on_batch_end() is slow compared to the batch update (0.588989). Check your callbacks.
% delta_t_median)
147/147 [==============================] - 170s 1s/step - loss: 65.8137
INFO: Training loop in progress
Epoch 283/500
147/147 [==============================] - 161s 1s/step - loss: 65.4904
INFO: Training loop in progress
Epoch 284/500
147/147 [==============================] - 174s 1s/step - loss: 61.6379
INFO: Training loop in progress
Epoch 285/500
147/147 [==============================] - 173s 1s/step - loss: 61.6149
INFO: Training loop in progress
Epoch 286/500
147/147 [==============================] - 174s 1s/step - loss: 61.4671
INFO: Training loop in progress
Epoch 287/500
147/147 [==============================] - 171s 1s/step - loss: 61.2316
INFO: Training loop in progress
Epoch 288/500
147/147 [==============================] - 176s 1s/step - loss: 64.7094
INFO: Training loop in progress
Epoch 289/500
147/147 [==============================] - 182s 1s/step - loss: 63.1376
INFO: Training loop in progress
Epoch 290/500
147/147 [==============================] - 175s 1s/step - loss: 59.9275
INFO: Training loop in progress
Epoch 291/500
147/147 [==============================] - 172s 1s/step - loss: 62.1484
INFO: Training loop in progress
Epoch 292/500
147/147 [==============================] - 181s 1s/step - loss: 64.2922
INFO: Training loop in progress
Epoch 293/500
147/147 [==============================] - 178s 1s/step - loss: 60.2746
INFO: Training loop in progress
Epoch 294/500
147/147 [==============================] - 184s 1s/step - loss: 64.8252
INFO: Training loop in progress
Epoch 295/500
147/147 [==============================] - 173s 1s/step - loss: 63.1392
INFO: Training loop in progress
Epoch 296/500
147/147 [==============================] - 177s 1s/step - loss: 63.4977
INFO: Training loop in progress
Epoch 297/500
147/147 [==============================] - 175s 1s/step - loss: 63.2056
INFO: Training loop in progress
Epoch 298/500
147/147 [==============================] - 184s 1s/step - loss: 57.6764
INFO: Training loop in progress
Epoch 299/500
147/147 [==============================] - 167s 1s/step - loss: 70.7185
INFO: Training loop in progress
Epoch 300/500
147/147 [==============================] - 183s 1s/step - loss: 64.6224
Producing predictions: 100%|████████████████████| 59/59 [00:40<00:00, 1.46it/s]
Start to calculate AP for each class
bus AP 0.74199
car AP 0.38829
motorcycle AP 0.04584
person AP 0.39035
truck AP 0.43023
van AP 0.74972
mAP 0.45774
Validation loss: 35.68125428991803
Epoch 00300: saving model to /workspace/tao-experiments/yolo_v4_tiny/experiment_dir_unpruned/weights/yolov4_cspdarknet_tiny_epoch_300.tlt
INFO: Training loop in progress
Epoch 301/500
147/147 [==============================] - 165s 1s/step - loss: 61.7941
INFO: Training loop in progress
Epoch 302/500
147/147 [==============================] - 167s 1s/step - loss: 64.3165
INFO: Training loop in progress
Epoch 303/500
147/147 [==============================] - 158s 1s/step - loss: 57.0432
INFO: Training loop in progress
Epoch 304/500
147/147 [==============================] - 171s 1s/step - loss: 61.1457
INFO: Training loop in progress
Epoch 305/500
147/147 [==============================] - 159s 1s/step - loss: 63.8288
INFO: Training loop in progress
Epoch 306/500
147/147 [==============================] - 167s 1s/step - loss: 56.2817
INFO: Training loop in progress
Epoch 307/500
147/147 [==============================] - 166s 1s/step - loss: 58.7282
INFO: Training loop in progress
Epoch 308/500
147/147 [==============================] - 170s 1s/step - loss: 63.7764
INFO: Training loop in progress
Epoch 309/500
147/147 [==============================] - 168s 1s/step - loss: 65.0983
INFO: Training loop in progress
Epoch 310/500
147/147 [==============================] - 169s 1s/step - loss: 61.8188
INFO: Training loop in progress
Epoch 311/500
147/147 [==============================] - 175s 1s/step - loss: 60.9837
INFO: Training loop in progress
Epoch 312/500
147/147 [==============================] - 164s 1s/step - loss: 58.7195
INFO: Training loop in progress
Epoch 313/500
147/147 [==============================] - 167s 1s/step - loss: 55.3707
INFO: Training loop in progress
Epoch 314/500
147/147 [==============================] - 169s 1s/step - loss: 59.4272
INFO: Training loop in progress
Epoch 315/500
147/147 [==============================] - 171s 1s/step - loss: 58.3997
INFO: Training loop in progress
Epoch 316/500
147/147 [==============================] - 172s 1s/step - loss: 60.6537
INFO: Training loop in progress
Epoch 317/500
147/147 [==============================] - 184s 1s/step - loss: 60.9321
INFO: Training loop in progress
Epoch 318/500
147/147 [==============================] - 182s 1s/step - loss: 62.5915
INFO: Training loop in progress
Epoch 319/500
147/147 [==============================] - 179s 1s/step - loss: 60.4852
INFO: Training loop in progress
Epoch 320/500
147/147 [==============================] - 182s 1s/step - loss: 60.6551
INFO: Training loop in progress
Epoch 321/500
147/147 [==============================] - 174s 1s/step - loss: 60.3092
INFO: Training loop in progress
Epoch 322/500
147/147 [==============================] - 177s 1s/step - loss: 63.3549
INFO: Training loop in progress
Epoch 323/500
147/147 [==============================] - 178s 1s/step - loss: 57.7312
INFO: Training loop in progress
Epoch 324/500
147/147 [==============================] - 178s 1s/step - loss: 60.7344
INFO: Training loop in progress
Epoch 325/500
147/147 [==============================] - 177s 1s/step - loss: 60.8100
Producing predictions: 100%|████████████████████| 59/59 [00:39<00:00, 1.50it/s]
Start to calculate AP for each class
bus AP 0.79575
car AP 0.47595
motorcycle AP 0.15152
person AP 0.41054
truck AP 0.46372
van AP 0.75958
mAP 0.50951
Validation loss: 35.24135660721084
Epoch 00325: saving model to /workspace/tao-experiments/yolo_v4_tiny/experiment_dir_unpruned/weights/yolov4_cspdarknet_tiny_epoch_325.tlt
INFO: Training loop in progress
Epoch 326/500
147/147 [==============================] - 160s 1s/step - loss: 56.5928
INFO: Training loop in progress
Epoch 327/500
147/147 [==============================] - 159s 1s/step - loss: 58.1513
INFO: Training loop in progress
Epoch 328/500
147/147 [==============================] - 178s 1s/step - loss: 56.9702
INFO: Training loop in progress
Epoch 329/500
147/147 [==============================] - 178s 1s/step - loss: 63.1216
INFO: Training loop in progress
Epoch 330/500
147/147 [==============================] - 183s 1s/step - loss: 58.2748
INFO: Training loop in progress
Epoch 331/500
147/147 [==============================] - 186s 1s/step - loss: 57.1779
INFO: Training loop in progress
Epoch 332/500
147/147 [==============================] - 185s 1s/step - loss: 61.0566
INFO: Training loop in progress
Epoch 333/500
147/147 [==============================] - 180s 1s/step - loss: 63.1566
INFO: Training loop in progress
Epoch 334/500
147/147 [==============================] - 179s 1s/step - loss: 60.0457
INFO: Training loop in progress
Epoch 335/500
147/147 [==============================] - 179s 1s/step - loss: 57.8198
INFO: Training loop in progress
Epoch 336/500
147/147 [==============================] - 178s 1s/step - loss: 59.5335
INFO: Training loop in progress
Epoch 337/500
147/147 [==============================] - 177s 1s/step - loss: 61.8735
INFO: Training loop in progress
Epoch 338/500
147/147 [==============================] - 178s 1s/step - loss: 64.2390
INFO: Training loop in progress
Epoch 339/500
147/147 [==============================] - 175s 1s/step - loss: 58.9039
INFO: Training loop in progress
Epoch 340/500
147/147 [==============================] - 176s 1s/step - loss: 54.2408
INFO: Training loop in progress
Epoch 341/500
147/147 [==============================] - 178s 1s/step - loss: 55.2539
INFO: Training loop in progress
Epoch 342/500
147/147 [==============================] - 175s 1s/step - loss: 59.7809
INFO: Training loop in progress
Epoch 343/500
147/147 [==============================] - 175s 1s/step - loss: 60.1105
INFO: Training loop in progress
Epoch 344/500
147/147 [==============================] - 176s 1s/step - loss: 61.5409
INFO: Training loop in progress
Epoch 345/500
147/147 [==============================] - 179s 1s/step - loss: 59.7987
INFO: Training loop in progress
Epoch 346/500
147/147 [==============================] - 174s 1s/step - loss: 60.1907
INFO: Training loop in progress
Epoch 347/500
147/147 [==============================] - 177s 1s/step - loss: 58.4336
INFO: Training loop in progress
Epoch 348/500
147/147 [==============================] - 177s 1s/step - loss: 58.5590
INFO: Training loop in progress
Epoch 349/500
147/147 [==============================] - 177s 1s/step - loss: 59.0470
INFO: Training loop in progress
Epoch 350/500
147/147 [==============================] - 175s 1s/step - loss: 62.5682
Producing predictions: 100%|████████████████████| 59/59 [00:40<00:00, 1.46it/s]
Start to calculate AP for each class
bus AP 0.71681
car AP 0.48087
motorcycle AP 0.22078
person AP 0.43571
truck AP 0.45203
van AP 0.77525
mAP 0.51357
Validation loss: 34.56129410307286
Epoch 00350: saving model to /workspace/tao-experiments/yolo_v4_tiny/experiment_dir_unpruned/weights/yolov4_cspdarknet_tiny_epoch_350.tlt
INFO: Training loop in progress
Epoch 351/500
147/147 [==============================] - 163s 1s/step - loss: 57.4099
INFO: Training loop in progress
Epoch 352/500
147/147 [==============================] - 161s 1s/step - loss: 56.3537
INFO: Training loop in progress
Epoch 353/500
147/147 [==============================] - 181s 1s/step - loss: 56.1302
INFO: Training loop in progress
Epoch 354/500
147/147 [==============================] - 180s 1s/step - loss: 59.2711
INFO: Training loop in progress
Epoch 355/500
147/147 [==============================] - 179s 1s/step - loss: 58.0873
INFO: Training loop in progress
Epoch 356/500
147/147 [==============================] - 177s 1s/step - loss: 59.4608
INFO: Training loop in progress
Epoch 357/500
147/147 [==============================] - 179s 1s/step - loss: 65.7877
INFO: Training loop in progress
Epoch 358/500
147/147 [==============================] - 181s 1s/step - loss: 58.9386
INFO: Training loop in progress
Epoch 359/500
147/147 [==============================] - 176s 1s/step - loss: 56.5022
INFO: Training loop in progress
Epoch 360/500
147/147 [==============================] - 180s 1s/step - loss: 55.3920
INFO: Training loop in progress
Epoch 361/500
147/147 [==============================] - 179s 1s/step - loss: 56.3562
INFO: Training loop in progress
Epoch 362/500
147/147 [==============================] - 179s 1s/step - loss: 53.3507
INFO: Training loop in progress
Epoch 363/500
147/147 [==============================] - 184s 1s/step - loss: 55.3905
INFO: Training loop in progress
Epoch 364/500
147/147 [==============================] - 173s 1s/step - loss: 59.1503
INFO: Training loop in progress
Epoch 365/500
147/147 [==============================] - 180s 1s/step - loss: 60.5284
INFO: Training loop in progress
Epoch 366/500
147/147 [==============================] - 177s 1s/step - loss: 57.1750
INFO: Training loop in progress
Epoch 367/500
147/147 [==============================] - 179s 1s/step - loss: 55.3621
INFO: Training loop in progress
Epoch 368/500
147/147 [==============================] - 179s 1s/step - loss: 55.6117
INFO: Training loop in progress
Epoch 369/500
147/147 [==============================] - 178s 1s/step - loss: 57.3169
INFO: Training loop in progress
Epoch 370/500
147/147 [==============================] - 180s 1s/step - loss: 52.6903
INFO: Training loop in progress
Epoch 371/500
147/147 [==============================] - 180s 1s/step - loss: 56.2942
INFO: Training loop in progress
Epoch 372/500
147/147 [==============================] - 179s 1s/step - loss: 60.1888
INFO: Training loop in progress
Epoch 373/500
147/147 [==============================] - 179s 1s/step - loss: 58.3556
INFO: Training loop in progress
Epoch 374/500
147/147 [==============================] - 182s 1s/step - loss: 58.4871
INFO: Training loop in progress
Epoch 375/500
147/147 [==============================] - 186s 1s/step - loss: 55.7557
Producing predictions: 100%|████████████████████| 59/59 [00:42<00:00, 1.39it/s]
Start to calculate AP for each class
bus AP 0.69201
car AP 0.4888
motorcycle AP 0.12121
person AP 0.43793
truck AP 0.50101
van AP 0.76325
mAP 0.5007
Validation loss: 34.62910021765757
Epoch 00375: saving model to /workspace/tao-experiments/yolo_v4_tiny/experiment_dir_unpruned/weights/yolov4_cspdarknet_tiny_epoch_375.tlt
INFO: Training loop in progress
Epoch 376/500
147/147 [==============================] - 165s 1s/step - loss: 57.6895
INFO: Training loop in progress
Epoch 377/500
147/147 [==============================] - 162s 1s/step - loss: 59.8198
INFO: Training loop in progress
Epoch 378/500
147/147 [==============================] - 183s 1s/step - loss: 58.1805
INFO: Training loop in progress
Epoch 379/500
147/147 [==============================] - 182s 1s/step - loss: 58.1707
INFO: Training loop in progress
Epoch 380/500
147/147 [==============================] - 185s 1s/step - loss: 59.8787
INFO: Training loop in progress
Epoch 381/500
147/147 [==============================] - 186s 1s/step - loss: 60.9108
INFO: Training loop in progress
Epoch 382/500
147/147 [==============================] - 188s 1s/step - loss: 57.9279
INFO: Training loop in progress
Epoch 383/500
147/147 [==============================] - 187s 1s/step - loss: 55.1692
INFO: Training loop in progress
Epoch 384/500
147/147 [==============================] - 187s 1s/step - loss: 60.0766
INFO: Training loop in progress
Epoch 385/500
147/147 [==============================] - 188s 1s/step - loss: 55.3396
INFO: Training loop in progress
Epoch 386/500
147/147 [==============================] - 187s 1s/step - loss: 58.4062
INFO: Training loop in progress
Epoch 387/500
147/147 [==============================] - 187s 1s/step - loss: 55.1818
INFO: Training loop in progress
Epoch 388/500
147/147 [==============================] - 186s 1s/step - loss: 55.9611
INFO: Training loop in progress
Epoch 389/500
147/147 [==============================] - 185s 1s/step - loss: 57.2047
INFO: Training loop in progress
Epoch 390/500
147/147 [==============================] - 179s 1s/step - loss: 54.2458
INFO: Training loop in progress
Epoch 391/500
147/147 [==============================] - 178s 1s/step - loss: 57.1939
INFO: Training loop in progress
Epoch 392/500
147/147 [==============================] - 177s 1s/step - loss: 54.1291
INFO: Training loop in progress
Epoch 393/500
147/147 [==============================] - 177s 1s/step - loss: 54.7330
INFO: Training loop in progress
Epoch 394/500
147/147 [==============================] - 177s 1s/step - loss: 54.8451
INFO: Training loop in progress
Epoch 395/500
147/147 [==============================] - 176s 1s/step - loss: 55.5947
INFO: Training loop in progress
Epoch 396/500
147/147 [==============================] - 176s 1s/step - loss: 56.2735
INFO: Training loop in progress
Epoch 397/500
147/147 [==============================] - 177s 1s/step - loss: 53.7573
INFO: Training loop in progress
Epoch 398/500
147/147 [==============================] - 176s 1s/step - loss: 55.1412
INFO: Training loop in progress
Epoch 399/500
147/147 [==============================] - 176s 1s/step - loss: 55.1581
INFO: Training loop in progress
Epoch 400/500
147/147 [==============================] - 177s 1s/step - loss: 59.1672
Producing predictions: 100%|████████████████████| 59/59 [00:39<00:00, 1.48it/s]
Start to calculate AP for each class
bus AP 0.73362
car AP 0.46367
motorcycle AP 0.12727
person AP 0.40654
truck AP 0.5142
van AP 0.77238
mAP 0.50295
Validation loss: 34.95020383091296
Epoch 00400: saving model to /workspace/tao-experiments/yolo_v4_tiny/experiment_dir_unpruned/weights/yolov4_cspdarknet_tiny_epoch_400.tlt
INFO: Training loop in progress
Epoch 401/500
147/147 [==============================] - 157s 1s/step - loss: 54.0874
INFO: Training loop in progress
Epoch 402/500
147/147 [==============================] - 160s 1s/step - loss: 62.3031
INFO: Training loop in progress
Epoch 403/500
147/147 [==============================] - 178s 1s/step - loss: 55.4003
INFO: Training loop in progress
Epoch 404/500
147/147 [==============================] - 177s 1s/step - loss: 55.4859
INFO: Training loop in progress
Epoch 405/500
147/147 [==============================] - 177s 1s/step - loss: 55.1617
INFO: Training loop in progress
Epoch 406/500
147/147 [==============================] - 176s 1s/step - loss: 53.7364
INFO: Training loop in progress
Epoch 407/500
147/147 [==============================] - 177s 1s/step - loss: 58.6183
INFO: Training loop in progress
Epoch 408/500
147/147 [==============================] - 177s 1s/step - loss: 55.2297
INFO: Training loop in progress
Epoch 409/500
147/147 [==============================] - 176s 1s/step - loss: 57.6367
INFO: Training loop in progress
Epoch 410/500
147/147 [==============================] - 177s 1s/step - loss: 57.8702
INFO: Training loop in progress
Epoch 411/500
147/147 [==============================] - 176s 1s/step - loss: 60.3144
INFO: Training loop in progress
Epoch 412/500
147/147 [==============================] - 176s 1s/step - loss: 58.2854
INFO: Training loop in progress
Epoch 413/500
147/147 [==============================] - 178s 1s/step - loss: 64.2767
INFO: Training loop in progress
Epoch 414/500
147/147 [==============================] - 177s 1s/step - loss: 56.1486
INFO: Training loop in progress
Epoch 415/500
147/147 [==============================] - 177s 1s/step - loss: 58.6552
INFO: Training loop in progress
Epoch 416/500
147/147 [==============================] - 177s 1s/step - loss: 56.8889
INFO: Training loop in progress
Epoch 417/500
147/147 [==============================] - 181s 1s/step - loss: 56.7213
INFO: Training loop in progress
Epoch 418/500
147/147 [==============================] - 179s 1s/step - loss: 53.3411
INFO: Training loop in progress
Epoch 419/500
147/147 [==============================] - 178s 1s/step - loss: 56.2887
INFO: Training loop in progress
Epoch 420/500
147/147 [==============================] - 178s 1s/step - loss: 60.5685
INFO: Training loop in progress
Epoch 421/500
147/147 [==============================] - 178s 1s/step - loss: 58.8606
INFO: Training loop in progress
Epoch 422/500
147/147 [==============================] - 180s 1s/step - loss: 57.7566
INFO: Training loop in progress
Epoch 423/500
147/147 [==============================] - 181s 1s/step - loss: 59.6809
INFO: Training loop in progress
Epoch 424/500
147/147 [==============================] - 188s 1s/step - loss: 57.6117
INFO: Training loop in progress
Epoch 425/500
147/147 [==============================] - 182s 1s/step - loss: 58.0493
Producing predictions: 100%|████████████████████| 59/59 [00:41<00:00, 1.42it/s]
Start to calculate AP for each class
bus AP 0.73624
car AP 0.49817
motorcycle AP 0.13636
person AP 0.45996
truck AP 0.55561
van AP 0.75204
mAP 0.52306
Validation loss: 33.71268529407049
Epoch 00425: saving model to /workspace/tao-experiments/yolo_v4_tiny/experiment_dir_unpruned/weights/yolov4_cspdarknet_tiny_epoch_425.tlt
INFO: Training loop in progress