Problem Setting Cudnn 7

I have trouble in verifying cuDNN v7.0. this first time i’m use this, my problem is cannot create handle on. and it’s make error

my error :
Severity Code Description Project File Line Suppression State
Error LNK2019 unresolved external symbol cudnn_handle referenced in function forward_convolutional_layer_gpu darknet C:\Users\Asus\Downloads\darknet-master\build\darknet\convolutional_kernels.cu.obj 1

this is the code:

#include "cuda_runtime.h"
#include "curand.h"
#include "cublas_v2.h"


extern "C" {
#include "convolutional_layer.h"
#include "batchnorm_layer.h"
#include "gemm.h"
#include "blas.h"
#include "im2col.h"
#include "col2im.h"
#include "utils.h"
#include "cuda.h"
}


__global__ void binarize_kernel(float *x, int n, float *binary)
{
	int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
	if (i >= n) return;
	binary[i] = (x[i] >= 0) ? 1 : -1;
}

void binarize_gpu(float *x, int n, float *binary)
{
	binarize_kernel << <cuda_gridsize(n), BLOCK >> >(x, n, binary);
	check_error(cudaPeekAtLastError());
}

__global__ void binarize_input_kernel(float *input, int n, int size, float *binary)
{
	int s = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
	if (s >= size) return;
	int i = 0;
	float mean = 0;
	for (i = 0; i < n; ++i) {
		mean += abs(input[i*size + s]);
	}
	mean = mean / n;
	for (i = 0; i < n; ++i) {
		binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
	}
}

void binarize_input_gpu(float *input, int n, int size, float *binary)
{
	binarize_input_kernel << <cuda_gridsize(size), BLOCK >> >(input, n, size, binary);
	check_error(cudaPeekAtLastError());
}


__global__ void binarize_weights_kernel(float *weights, int n, int size, float *binary)
{
	int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
	if (f >= n) return;
	int i = 0;
	float mean = 0;
	for (i = 0; i < size; ++i) {
		mean += abs(weights[f*size + i]);
	}
	mean = mean / size;
	for (i = 0; i < size; ++i) {
		binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean;
		//binary[f*size + i] = weights[f*size + i];
	}
}

void binarize_weights_gpu(float *weights, int n, int size, float *binary)
{
	binarize_weights_kernel << <cuda_gridsize(n), BLOCK >> >(weights, n, size, binary);
	check_error(cudaPeekAtLastError());
}

void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
{
	fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
	if (l.binary) {
		binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu);
		swap_binary(&l);
	}

	if (l.xnor) {
		binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu);
		swap_binary(&l);
		binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu);
		state.input = l.binary_input_gpu;
	}
#ifdef CUDNN
	float one = 1;
	cudnnConvolutionForward(cudnn_handle(),
		&one,
		l.srcTensorDesc,
		state.input,
		l.weightDesc,
		l.weights_gpu,
		l.convDesc,
		l.fw_algo,
		state.workspace,
		l.workspace_size,
		&one,
		l.dstTensorDesc,
		l.output_gpu);

#else
	int i;
	int m = l.n;
	int k = l.size*l.size*l.c;
	int n = l.out_w*l.out_h;
	for (i = 0; i < l.batch; ++i) {
		float * a = l.weights_gpu;
		float * b = state.workspace;
		float * c = l.output_gpu;
		im2col_ongpu(state.input + i * l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, b);
		gemm_ongpu(0, 0, m, n, k, 1., a, k, b, n, 1., c + i * m*n, n);
	}
#endif

	if (l.batch_normalize) {
		forward_batchnorm_layer_gpu(l, state);
	}
	add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);

	activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
	//if(l.dot > 0) dot_error_gpu(l);
	if (l.binary || l.xnor) swap_binary(&l);
	//cudaDeviceSynchronize();	// for correct profiling of performance
}

void backward_convolutional_layer_gpu(convolutional_layer l, network_state state)
{
	gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);

	backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);

	if (l.batch_normalize) {
		backward_batchnorm_layer_gpu(l, state);
		//axpy_ongpu(l.outputs*l.batch, -state.net.decay, l.x_gpu, 1, l.delta_gpu, 1);
	}
	else {
		//axpy_ongpu(l.outputs*l.batch, -state.net.decay, l.output_gpu, 1, l.delta_gpu, 1);
	}
	float *original_input = state.input;

	if (l.xnor) state.input = l.binary_input_gpu;
#ifdef CUDNN
	float one = 1;
	cudnnConvolutionBackwardFilter(cudnn_handle(),
		&one,
		l.srcTensorDesc,
		state.input,
		l.ddstTensorDesc,
		l.delta_gpu,
		l.convDesc,
		l.bf_algo,
		state.workspace,
		l.workspace_size,
		&one,
		l.dweightDesc,
		l.weight_updates_gpu);

	if (state.delta) {
		if (l.binary || l.xnor) swap_binary(&l);
		cudnnConvolutionBackwardData(cudnn_handle(),
			&one,
			l.weightDesc,
			l.weights_gpu,
			l.ddstTensorDesc,
			l.delta_gpu,
			l.convDesc,
			l.bd_algo,
			state.workspace,
			l.workspace_size,
			&one,
			l.dsrcTensorDesc,
			state.delta);
		if (l.binary || l.xnor) swap_binary(&l);
		if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta);
	}

#else
	int m = l.n;
	int n = l.size*l.size*l.c;
	int k = l.out_w*l.out_h;

	int i;
	for (i = 0; i < l.batch; ++i) {
		float * a = l.delta_gpu;
		float * b = state.workspace;
		float * c = l.weight_updates_gpu;

		im2col_ongpu(state.input + i * l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace);
		gemm_ongpu(0, 1, m, n, k, 1, a + i * m*k, k, b, k, 1, c, n);

		if (state.delta) {
			if (l.binary || l.xnor) swap_binary(&l);
			float * a = l.weights_gpu;
			float * b = l.delta_gpu;
			float * c = state.workspace;

			gemm_ongpu(1, 0, n, k, m, 1, a, n, b + i * k*m, k, 0, c, k);

			col2im_ongpu(state.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i * l.c*l.h*l.w);
			if (l.binary || l.xnor) {
				swap_binary(&l);
			}
			if (l.xnor) gradient_array_ongpu(original_input + i * l.c*l.h*l.w, l.c*l.h*l.w, HARDTAN, state.delta + i * l.c*l.h*l.w);
		}
	}
#endif
}

void pull_convolutional_layer(convolutional_layer layer)
{
	cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
	cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
	cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
	cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
	if (layer.batch_normalize) {
		cuda_pull_array(layer.scales_gpu, layer.scales, layer.n);
		cuda_pull_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
		cuda_pull_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
	}
	if (layer.adam) {
		cuda_pull_array(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size);
		cuda_pull_array(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size);
	}
}

void push_convolutional_layer(convolutional_layer layer)
{
	cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
	cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
	cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
	cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
	if (layer.batch_normalize) {
		cuda_push_array(layer.scales_gpu, layer.scales, layer.n);
		cuda_push_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
		cuda_push_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
	}
	if (layer.adam) {
		cuda_push_array(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size);
		cuda_push_array(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size);
	}
}

void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
{
	int size = layer.size*layer.size*layer.c*layer.n;
	axpy_ongpu(layer.n, learning_rate / batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
	scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);

	if (layer.scales_gpu) {
		axpy_ongpu(layer.n, learning_rate / batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1);
		scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1);
	}

	if (layer.adam) {
		scal_ongpu(size, layer.B1, layer.m_gpu, 1);
		scal_ongpu(size, layer.B2, layer.v_gpu, 1);

		axpy_ongpu(size, -decay * batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);

		axpy_ongpu(size, -(1 - layer.B1), layer.weight_updates_gpu, 1, layer.m_gpu, 1);
		mul_ongpu(size, layer.weight_updates_gpu, 1, layer.weight_updates_gpu, 1);
		axpy_ongpu(size, (1 - layer.B2), layer.weight_updates_gpu, 1, layer.v_gpu, 1);

		adam_gpu(size, layer.weights_gpu, layer.m_gpu, layer.v_gpu, layer.B1, layer.B2, learning_rate / batch, layer.eps, layer.t + 1);
		fill_ongpu(size, 0, layer.weight_updates_gpu, 1);
	}
	else {
		axpy_ongpu(size, -decay * batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
		axpy_ongpu(size, learning_rate / batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
		scal_ongpu(size, momentum, layer.weight_updates_gpu, 1);
	}
}

We created a new “Deep Learning Training and Inference” section in Devtalk to improve the experience for deep learning and accelerated computing, and HPC users:
https://devtalk.nvidia.com/default/board/301/deep-learning-training-and-inference-/

We are moving active deep learning threads to the new section.

URLs for topics will not change with the re-categorization. So your bookmarks and links will continue to work as earlier.

-Siddharth