I am using all four cores of CPU now then too FPS is not increasing.
please check the output of tegrastats while running the code.
test.txt (7.3 KB)
The python file and config files are
dstest_segmentation_config_semantic.txt (3.2 KB)
#!/usr/bin/env python3
import sys
sys.path.append(‘…/’)
import gi
import math
gi.require_version(‘Gst’, ‘1.0’)
from gi.repository import GObject, Gst
from common.is_aarch_64 import is_aarch64
from common.bus_call import bus_call
import cv2
import pyds
import numpy as np
import os.path
from os import path
from common.FPS import GETFPS
fps_streams={}
MAX_DISPLAY_LEN = 64
MUXER_OUTPUT_WIDTH = 1920
MUXER_OUTPUT_HEIGHT = 1080
MUXER_BATCH_TIMEOUT_USEC = 4000000
TILED_OUTPUT_WIDTH = 1280
TILED_OUTPUT_HEIGHT = 720
COLORS = [[128, 128, 64], [0, 0, 128], [0, 128, 128], [128, 0, 0],
[128, 0, 128], [128, 128, 0], [0, 128, 0], [0, 0, 64],
[0, 0, 192], [0, 128, 64], [0, 128, 192], [128, 0, 64],
[128, 0, 192], [128, 128, 128]]
def map_mask_as_display_bgr(mask):
“”" Assigning multiple colors as image output using the information
contained in mask. (BGR is opencv standard.)
“”"
# getting a list of available classes
m_list = list(set(mask.flatten()))
shp = mask.shape
bgr = np.zeros((shp[0], shp[1], 3))
for idx in m_list:
bgr[mask == idx] = COLORS[idx]
return bgr
def seg_src_pad_buffer_probe(pad, info, u_data):
gst_buffer = info.get_buffer()
if not gst_buffer:
print("Unable to get GstBuffer ")
return
# Retrieve batch metadata from the gst_buffer
# Note that pyds.gst_buffer_get_nvds_batch_meta() expects the
# C address of gst_buffer as input, which is obtained with hash(gst_buffer)
batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))
l_frame = batch_meta.frame_meta_list
while l_frame is not None:
try:
# Note that l_frame.data needs a cast to pyds.NvDsFrameMeta
# The casting is done by pyds.NvDsFrameMeta.cast()
# The casting also keeps ownership of the underlying memory
# in the C code, so the Python garbage collector will leave
# it alone.
frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
except StopIteration:
break
frame_number = frame_meta.frame_num
l_user = frame_meta.frame_user_meta_list
while l_user is not None:
try:
# Note that l_user.data needs a cast to pyds.NvDsUserMeta
# The casting is done by pyds.NvDsUserMeta.cast()
# The casting also keeps ownership of the underlying memory
# in the C code, so the Python garbage collector will leave
# it alone.
seg_user_meta = pyds.NvDsUserMeta.cast(l_user.data)
except StopIteration:
break
if seg_user_meta and seg_user_meta.base_meta.meta_type == \
pyds.NVDSINFER_SEGMENTATION_META:
try:
# Note that seg_user_meta.user_meta_data needs a cast to
# pyds.NvDsInferSegmentationMeta
# The casting is done by pyds.NvDsInferSegmentationMeta.cast()
# The casting also keeps ownership of the underlying memory
# in the C code, so the Python garbage collector will leave
# it alone.
segmeta = pyds.NvDsInferSegmentationMeta.cast(seg_user_meta.user_meta_data)
except StopIteration:
break
# Retrieve mask data in the numpy format from segmeta
# Note that pyds.get_segmentation_masks() expects object of
# type NvDsInferSegmentationMeta
masks = pyds.get_segmentation_masks(segmeta)
masks = np.array(masks, copy=True, order='C')
# map the obtained masks to colors of 2 classes.
frame_image = map_mask_as_display_bgr(masks)
#cv2.imwrite(folder_name + "/" + str(frame_number) + ".jpg", frame_image)
fps_streams["stream{0}".format(frame_meta.pad_index)].get_fps()
try:
l_user = l_user.next
except StopIteration:
break
try:
l_frame = l_frame.next
except StopIteration:
break
return Gst.PadProbeReturn.OK
def main(args):
# Check input arguments
if len(args) != 4:
sys.stderr.write("usage: %s config_file <jpeg/mjpeg file> "
“\n” % args[0])
sys.exit(1)
for i in range(0,len(args)-1):
fps_streams["stream{0}".format(i)]=GETFPS(i)
global folder_name
folder_name = args[-1]
if path.exists(folder_name):
sys.stderr.write("The output folder %s already exists. "
"Please remove it first.\n" % folder_name)
sys.exit(1)
os.mkdir(folder_name)
config_file = args[1]
num_sources = len(args) - 3
# Standard GStreamer initialization
GObject.threads_init()
Gst.init(None)
# Create gstreamer elements
# Create Pipeline element that will form a connection of other elements
print("Creating Pipeline \n ")
pipeline = Gst.Pipeline()
if not pipeline:
sys.stderr.write(" Unable to create Pipeline \n")
# Source element for reading from the file
print("Creating Source \n ")
source = Gst.ElementFactory.make("filesrc", "file-source")
if not source:
sys.stderr.write(" Unable to create Source \n")
# Since the data format in the input file is jpeg,
# we need a jpegparser
print("Creating jpegParser \n")
jpegparser = Gst.ElementFactory.make("jpegparse", "jpeg-parser")
if not jpegparser:
sys.stderr.write("Unable to create jpegparser \n")
# Use nvdec for hardware accelerated decode on GPU
print("Creating Decoder \n")
decoder = Gst.ElementFactory.make("nvv4l2decoder", "nvv4l2-decoder")
if not decoder:
sys.stderr.write(" Unable to create Nvv4l2 Decoder \n")
# Create nvstreammux instance to form batches from one or more sources.
streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
if not streammux:
sys.stderr.write(" Unable to create NvStreamMux \n")
# Create segmentation for primary inference
seg = Gst.ElementFactory.make("nvinfer", "primary-nvinference-engine")
if not seg:
sys.stderr.write("Unable to create primary inferene\n")
# Create nvsegvisual for visualizing segmentation
nvsegvisual = Gst.ElementFactory.make("nvsegvisual", "nvsegvisual")
if not nvsegvisual:
sys.stderr.write("Unable to create nvsegvisual\n")
if is_aarch64():
transform = Gst.ElementFactory.make("nvegltransform", "nvegl-transform")
print("Creating EGLSink \n")
sink = Gst.ElementFactory.make("nveglglessink", "nvvideo-renderer")
if not sink:
sys.stderr.write(" Unable to create egl sink \n")
print("Playing file %s " % args[2])
source.set_property('location', args[2])
if is_aarch64() and (args[2].endswith("mjpeg") or args[2].endswith("mjpg")):
decoder.set_property('mjpeg', 1)
streammux.set_property('width', 1920)
streammux.set_property('height', 1080)
streammux.set_property('batch-size', 1)
streammux.set_property('batched-push-timeout', 4000)
seg.set_property('config-file-path', config_file)
pgie_batch_size = seg.get_property("batch-size")
if pgie_batch_size != num_sources:
print("WARNING: Overriding infer-config batch-size", pgie_batch_size,
" with number of sources ", num_sources,
" \n")
seg.set_property("batch-size", num_sources)
nvsegvisual.set_property('batch-size', num_sources)
nvsegvisual.set_property('width', 512)
nvsegvisual.set_property('height', 512)
sink.set_property("qos", 0)
print("Adding elements to Pipeline \n")
pipeline.add(source)
pipeline.add(jpegparser)
pipeline.add(decoder)
pipeline.add(streammux)
pipeline.add(seg)
pipeline.add(nvsegvisual)
pipeline.add(sink)
if is_aarch64():
pipeline.add(transform)
# we link the elements together
# file-source -> jpeg-parser -> nvv4l2-decoder ->
# nvinfer -> nvsegvisual -> sink
print("Linking elements in the Pipeline \n")
source.link(jpegparser)
jpegparser.link(decoder)
sinkpad = streammux.get_request_pad("sink_0")
if not sinkpad:
sys.stderr.write(" Unable to get the sink pad of streammux \n")
srcpad = decoder.get_static_pad("src")
if not srcpad:
sys.stderr.write(" Unable to get source pad of decoder \n")
srcpad.link(sinkpad)
streammux.link(seg)
seg.link(nvsegvisual)
if is_aarch64():
nvsegvisual.link(transform)
transform.link(sink)
else:
nvsegvisual.link(sink)
# create an event loop and feed gstreamer bus mesages to it
loop = GObject.MainLoop()
bus = pipeline.get_bus()
bus.add_signal_watch()
bus.connect("message", bus_call, loop)
# Lets add probe to get informed of the meta data generated, we add probe to
# the src pad of the inference element
seg_src_pad = seg.get_static_pad("src")
if not seg_src_pad:
sys.stderr.write(" Unable to get src pad \n")
else:
seg_src_pad.add_probe(Gst.PadProbeType.BUFFER, seg_src_pad_buffer_probe, 0)
# List the sources
print("Now playing...")
for i, source in enumerate(args[1:-1]):
if i != 0:
print(i, ": ", source)
print("Starting pipeline \n")
# start play back and listed to events
pipeline.set_state(Gst.State.PLAYING)
try:
loop.run()
except:
pass
# cleanup
pipeline.set_state(Gst.State.NULL)
if name == ‘main’:
sys.exit(main(sys.argv))