Please provide the following information when requesting support.
• Hardware (T4/V100/Xavier/Nano/etc) A30
• Network Type : FasterRCNN
Retraing a pruned model and the results are very low in AP, precision, recall and RPN recall.
The FasterRCNN model has very high AP, precision, recall and RPN recall. The model is pruned using the following command.
faster_rcnn prune -m /workspace/Nyan/tao_source_codes_v5.0.0/notebooks/tao_launcher_starter_kit/faster_rcnn/results/ver_2/unpruned/frcnn_resnet_50.epoch_50.hdf5 \
-o /workspace/Nyan/tao_source_codes_v5.0.0/notebooks/tao_launcher_starter_kit/faster_rcnn/results/ver_2/pruned/frcnn_resnet_50_pruned.hdf5 \
-k nvidia_tao \
-eq union \
-pth 0.7
After that the pruned model is retrained with the following command.
faster_rcnn train -e /workspace/Nyan/tao_source_codes_v5.0.0/notebooks/tao_launcher_starter_kit/faster_rcnn/specs/default_spec_resnet50_retrain.txt \
-r /workspace/Nyan/tao_source_codes_v5.0.0/notebooks/tao_launcher_starter_kit/faster_rcnn/results/ver_2/retrained \
-k nvidia_tao \
--gpus 1
But I have very low accuracy in validation.
==========================================================================================
Class AP precision recall RPN_recall
------------------------------------------------------------------------------------------
nohelmet 0.0000 0.0000 0.0000 0.0008
------------------------------------------------------------------------------------------
withhelmet 0.0000 0.0002 0.0333 0.0750
------------------------------------------------------------------------------------------
The following spec file is used for retraining.
default_spec_resnet50_retrain.txt (3.7 KB)
What did I do wrong?