with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network:
...
network.add_input(...)
etc.
This has worked fine for months on the 1080 TI card. I’ve recently added a RTX 2080 TI to my machine and it does not work. While building the model, I see this error:
user@dd17d4e31b32:~$ dpkg -l | grep TensorRT
ii libnvinfer-dev 5.1.5-1+cuda10.0 amd64 TensorRT development libraries and headers
ii libnvinfer-samples 5.1.5-1+cuda10.0 all TensorRT samples and documentation
ii libnvinfer5 5.1.5-1+cuda10.0 amd64 TensorRT runtime libraries
ii python-libnvinfer 5.1.5-1+cuda10.0 amd64 Python bindings for TensorRT
ii python-libnvinfer-dev 5.1.5-1+cuda10.0 amd64 Python development package for TensorRT
ii tensorrt 5.1.5.0-1+cuda10.0 amd64 Meta package of TensorRT
user@dd17d4e31b32:~$ dpkg -l | grep cudnn
ii libcudnn7 7.5.0.56-1+cuda10.1 amd64 cuDNN runtime libraries
ii libcudnn7-dev 7.5.0.56-1+cuda10.1 amd64 cuDNN development libraries and headers
Relevant part of Dockerfile:
# cuda/cudnn
FROM nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04
# Install TensorRT
RUN dpkg -i /debs/nv-tensorrt-repo-ubuntu1604-cuda10.0-trt5.1.5.0-ga-20190427_1-1_amd64.deb
RUN apt-key add /var/nv-tensorrt-repo-cuda10.0-trt5.1.5.0-ga-20190427/7fa2af80.pub
RUN apt-get update && apt-get -y install \
libcudnn7=7.5.0.56-1+cuda10.0 \
libcudnn7-dev=7.5.0.56-1+cuda10.0 \
tensorrt=5.1.5.0-1+cuda10.0 \
python-libnvinfer-dev=5.1.5-1+cuda10.0 \
python-libnvinfer=5.1.5-1+cuda10.0 \
libnvinfer5=5.1.5-1+cuda10.0 \
libnvinfer-dev=5.1.5-1+cuda10.0
Did you were able to resolve that issue? I am running exactly in the same issue with the exact same setup, except the Ubuntu version. I am using Ubuntu 18
Hi, have you solved this issue, I have the same issue:
[TensorRT] ERROR: cuda/cudaConvolutionLayer.cpp (238) - Cudnn Error in execute: 8 (CUDNN_STATUS_EXECUTION_FAILED)
Download cuDNN v7.6.3 (August 23, 2019), for CUDA 9.0
“Library for Windows, Mac, Linux, Ubuntu(x86_64 architecture)”
1. cuDNN Runtime Library for Ubuntu16.04 (Deb)
2. cuDNN Developer Library for Ubuntu16.04 (Deb)
-> sudo dpkg -i 1 & 2
3. cuDNN Library for Linux
-> unzip and copy the files to your cuda driver, in your case cuda-9.0, * note check the name of your
cuda driver folder if it is cuda-9.0
$ sudo cp cuda/include/cudnn.h /usr/local/cuda-9.0/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda-9.0/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda-9.0/lib64/libcudnn*
Hi, thanks you for helping me. I have tried but it did not solve my problem:
‘’’
[TensorRT] ERROR: cuda/cudaConvolutionLayer.cpp (238) - Cudnn Error in execute: 8 (CUDNN_STATUS_EXECUTION_FAILED)
‘’’
My configuration:
OS: ubuntu 16.04
cuda: 9.0
cudnn: 7.6.3.30
tensorrt: 5.1.5
GPU: 2080Ti
dpkg -l | grep TensorRT
ii graphsurgeon-tf 5.1.5-1+cuda9.0 amd64 GraphSurgeon for TensorRT package
ii libnvinfer-dev 5.1.5-1+cuda9.0 amd64 TensorRT development libraries and headers
ii libnvinfer-samples 5.1.5-1+cuda9.0 all TensorRT samples and documentation
ii libnvinfer5 5.1.5-1+cuda9.0 amd64 TensorRT runtime libraries
ii python-libnvinfer 5.1.5-1+cuda9.0 amd64 Python bindings for TensorRT
ii python-libnvinfer-dev 5.1.5-1+cuda9.0 amd64 Python development package for TensorRT
ii tensorrt 5.1.5.0-1+cuda9.0 amd64 Meta package of TensorRT
ii uff-converter-tf 5.1.5-1+cuda9.0 amd64 UFF converter for TensorRT package
dpkg -l | grep cudnn
ii libcudnn7 7.6.3.30-1+cuda9.0 amd64 cuDNN runtime libraries
ii libcudnn7-dev 7.6.3.30-1+cuda9.0 amd64 cuDNN development libraries and headers
I want to know what causes the issue, is the version of cudnn incompatible with cuda9.0?
Below is the TensorRT Release 5.1.5 (Desktop users) Documentation.
The nvidia recommend that the Supported cuDNN versions is 7.5.0 with tensorrt5.1.5, I have tried it but did not work and had the same issue.
Look forward to your reply!
I am also using cuda-9 before, however, when I installed the cudnn, I upgraded it to 10.1,
try to upgrade it to 10.1,
make sure to use deb package when installing it…
#/usr/local$ ls
bin cuda-10.1 doc games lib sbin src
cuda cuda-9.0 etc include man share
#dpkg -l | grep TensorRT
ii graphsurgeon-tf 5.1.5-1+cuda10.1 amd64 GraphSurgeon for TensorRT package
ii libnvinfer-dev 5.1.5-1+cuda10.1 amd64 TensorRT development libraries and headers
ii libnvinfer-samples 5.1.5-1+cuda10.1 all TensorRT samples and documentation
ii libnvinfer5 5.1.5-1+cuda10.1 amd64 TensorRT runtime libraries
ii python3-libnvinfer 5.1.5-1+cuda10.1 amd64 Python 3 bindings for TensorRT
ii python3-libnvinfer-dev 5.1.5-1+cuda10.1 amd64 Python 3 development package for TensorRT
ii tensorrt 5.1.5.0-1+cuda10.1 amd64 Meta package of TensorRT
ii uff-converter-tf 5.1.5-1+cuda10.1 amd64 UFF converter for TensorRT package
dpkg -l | grep cudnn
ii libcudnn7 7.6.2.24-1+cuda10.1 amd64 cuDNN runtime libraries
ii libcudnn7-dev 7.6.2.24-1+cuda10.1 amd64 cuDNN development libraries and headers
Thanks, I upgraded cuda to 10.1, and reinstall the cudnn and tensorrt, now it works. So I think cuda 9.0 is incompatible with 2080Ti gc. Thank you very much.
This did seem to be related to cudnn version. When I enabled full cuda debugging I realized the cudnn version being reported was 7.5.0 even though 7.6.3 was installed. I believe this may have been due to some shadowing from pytorch, because when I upgraded torch to 1.2.0 the problem has been fixed.